Normalized defining polynomial
\( x^{18} + 6 x^{16} - 18 x^{15} + 60 x^{14} - 75 x^{13} + 256 x^{12} - 459 x^{11} + 966 x^{10} - 871 x^{9} + 1740 x^{8} - 1116 x^{7} + 2869 x^{6} - 2424 x^{5} + 6450 x^{4} - 2606 x^{3} + 3006 x^{2} - 513 x + 361 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-569862261508654647313096707=-\,3^{27}\cdot 73^{3}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2993663730364181384005520607601} a^{17} - \frac{47042378421876069378981061944}{157561248966535862316080031979} a^{16} + \frac{565504415408040083261445567062}{2993663730364181384005520607601} a^{15} - \frac{926884006177791023007230426673}{2993663730364181384005520607601} a^{14} - \frac{352076789582274912894166781641}{2993663730364181384005520607601} a^{13} + \frac{335403059131488635365336644565}{2993663730364181384005520607601} a^{12} + \frac{1103180718421321636425626301951}{2993663730364181384005520607601} a^{11} - \frac{340238561233270490158820650561}{2993663730364181384005520607601} a^{10} + \frac{391372080934192337727560379191}{2993663730364181384005520607601} a^{9} + \frac{791269858585048479405768966005}{2993663730364181384005520607601} a^{8} - \frac{4265484652410841670794368043}{176097866492010669647383565153} a^{7} - \frac{455102135054269215733545812556}{2993663730364181384005520607601} a^{6} + \frac{4375040032785130830151037878}{157561248966535862316080031979} a^{5} - \frac{1488134829599160309509297384367}{2993663730364181384005520607601} a^{4} + \frac{1338248059913619262888092915483}{2993663730364181384005520607601} a^{3} - \frac{479052853161200656390273438266}{2993663730364181384005520607601} a^{2} - \frac{68362412065054888691049520700}{2993663730364181384005520607601} a - \frac{58281876123003494548604157719}{157561248966535862316080031979}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26510.9946997 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 34 conjugacy class representatives for t18n285 |
| Character table for t18n285 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 6.0.829067643.1, 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||