Normalized defining polynomial
\( x^{18} - 4 x^{17} + 10 x^{16} - 28 x^{15} + 65 x^{14} - 124 x^{13} + 194 x^{12} - 336 x^{11} + 644 x^{10} - 860 x^{9} + 1190 x^{8} - 2036 x^{7} + 2873 x^{6} - 2556 x^{5} + 3530 x^{4} - 4448 x^{3} + 2409 x^{2} - 1896 x + 2396 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5682972489147397363698323=-\,563^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $563$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{11} - \frac{1}{16} a^{10} - \frac{1}{32} a^{9} - \frac{3}{32} a^{8} + \frac{3}{32} a^{6} - \frac{5}{32} a^{5} + \frac{3}{16} a^{4} + \frac{9}{32} a^{3} + \frac{7}{32} a^{2} - \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{32} a^{13} + \frac{1}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{1}{32} a^{8} + \frac{3}{32} a^{7} - \frac{1}{4} a^{6} + \frac{7}{32} a^{5} + \frac{3}{32} a^{4} + \frac{7}{16} a^{3} - \frac{7}{32} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{8} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{9}{32} a^{2} + \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} + \frac{1}{16} a^{7} - \frac{3}{16} a^{6} + \frac{1}{8} a^{4} - \frac{23}{64} a^{3} - \frac{1}{64} a^{2} - \frac{3}{16} a - \frac{7}{16}$, $\frac{1}{256} a^{16} + \frac{3}{256} a^{14} - \frac{1}{64} a^{12} - \frac{3}{64} a^{11} + \frac{7}{128} a^{10} - \frac{1}{64} a^{9} - \frac{7}{128} a^{8} - \frac{3}{32} a^{7} - \frac{7}{32} a^{6} + \frac{5}{64} a^{5} + \frac{49}{256} a^{4} - \frac{17}{64} a^{3} - \frac{125}{256} a^{2} - \frac{5}{32} a + \frac{1}{64}$, $\frac{1}{6632875309212160} a^{17} - \frac{1910818711985}{1326575061842432} a^{16} + \frac{1779752211311}{1326575061842432} a^{15} + \frac{7580204958297}{6632875309212160} a^{14} - \frac{13641392243733}{1658218827303040} a^{13} + \frac{831411258161}{829109413651520} a^{12} + \frac{73863331152893}{3316437654606080} a^{11} - \frac{163153636502701}{3316437654606080} a^{10} - \frac{120008179422357}{3316437654606080} a^{9} - \frac{104831497081433}{3316437654606080} a^{8} - \frac{18433316233109}{414554706825760} a^{7} - \frac{172711004174093}{1658218827303040} a^{6} - \frac{205656691710151}{1326575061842432} a^{5} - \frac{173392505663481}{6632875309212160} a^{4} + \frac{2994755382279071}{6632875309212160} a^{3} + \frac{1355395503289281}{6632875309212160} a^{2} + \frac{130385858139707}{1658218827303040} a + \frac{338512193044099}{1658218827303040}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 168278.897914 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-563}) \), 3.1.563.1 x3, 6.0.178453547.1, 9.1.100469346961.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 563 | Data not computed | ||||||