Normalized defining polynomial
\( x^{18} - x^{17} + 9 x^{16} - 6 x^{15} + 50 x^{14} - 29 x^{13} + 162 x^{12} - 63 x^{11} + 361 x^{10} - 118 x^{9} + 494 x^{8} - 77 x^{7} + 431 x^{6} - 71 x^{5} + 185 x^{4} + 10 x^{3} + 35 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5677392343251487443465123=-\,3^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(57=3\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{57}(1,·)$, $\chi_{57}(4,·)$, $\chi_{57}(5,·)$, $\chi_{57}(7,·)$, $\chi_{57}(11,·)$, $\chi_{57}(16,·)$, $\chi_{57}(17,·)$, $\chi_{57}(20,·)$, $\chi_{57}(23,·)$, $\chi_{57}(25,·)$, $\chi_{57}(26,·)$, $\chi_{57}(28,·)$, $\chi_{57}(35,·)$, $\chi_{57}(43,·)$, $\chi_{57}(44,·)$, $\chi_{57}(47,·)$, $\chi_{57}(49,·)$, $\chi_{57}(55,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} - \frac{4}{37} a^{15} - \frac{12}{37} a^{14} + \frac{14}{37} a^{13} - \frac{3}{37} a^{12} - \frac{1}{37} a^{11} + \frac{5}{37} a^{10} - \frac{8}{37} a^{9} - \frac{2}{37} a^{8} + \frac{4}{37} a^{7} - \frac{7}{37} a^{6} - \frac{3}{37} a^{5} + \frac{5}{37} a^{4} + \frac{13}{37} a^{3} + \frac{18}{37} a^{2} + \frac{8}{37} a + \frac{9}{37}$, $\frac{1}{154764745241131} a^{17} + \frac{704294953363}{154764745241131} a^{16} + \frac{17035333877813}{154764745241131} a^{15} - \frac{21931839203463}{154764745241131} a^{14} - \frac{755893282713}{4182830952463} a^{13} - \frac{68703429952733}{154764745241131} a^{12} + \frac{2865531738805}{154764745241131} a^{11} + \frac{41922303650527}{154764745241131} a^{10} - \frac{64278683926278}{154764745241131} a^{9} - \frac{32436830274692}{154764745241131} a^{8} - \frac{63764950471438}{154764745241131} a^{7} - \frac{75054966409369}{154764745241131} a^{6} - \frac{54214255146582}{154764745241131} a^{5} - \frac{16333724524675}{154764745241131} a^{4} + \frac{56710263591819}{154764745241131} a^{3} + \frac{62141365181579}{154764745241131} a^{2} - \frac{1352008403848}{154764745241131} a - \frac{47076200659874}{154764745241131}$
Class group and class number
$C_{9}$, which has order $9$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{28416407390445}{154764745241131} a^{17} - \frac{26530391809334}{154764745241131} a^{16} + \frac{251486650478394}{154764745241131} a^{15} - \frac{150560620146021}{154764745241131} a^{14} + \frac{1388512765129213}{154764745241131} a^{13} - \frac{711364544797171}{154764745241131} a^{12} + \frac{4434676100278545}{154764745241131} a^{11} - \frac{1392636818955699}{154764745241131} a^{10} + \frac{9781341697275842}{154764745241131} a^{9} - \frac{2457651917355293}{154764745241131} a^{8} + \frac{13051931144375194}{154764745241131} a^{7} - \frac{819941733363259}{154764745241131} a^{6} + \frac{11130335830242394}{154764745241131} a^{5} - \frac{838871219953438}{154764745241131} a^{4} + \frac{4373617825317358}{154764745241131} a^{3} + \frac{1073864914854833}{154764745241131} a^{2} + \frac{763954466829073}{154764745241131} a + \frac{47644201890144}{154764745241131} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.361.1, 6.0.3518667.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |