Normalized defining polynomial
\( x^{18} - x^{17} - 6 x^{16} - 13 x^{15} + 61 x^{14} + 245 x^{13} + 372 x^{12} + 314 x^{11} + 906 x^{10} + 2799 x^{9} + 4131 x^{8} + 2808 x^{7} + 2387 x^{6} + 3862 x^{5} + 3861 x^{4} - 525 x^{3} + 583 x^{2} - 989 x + 529 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5652788623542031943002823=-\,11^{12}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{115} a^{11} - \frac{7}{115} a^{10} + \frac{2}{115} a^{9} - \frac{1}{115} a^{8} - \frac{48}{115} a^{7} + \frac{28}{115} a^{6} + \frac{42}{115} a^{5} - \frac{4}{115} a^{4} + \frac{39}{115} a^{3} + \frac{3}{115} a^{2} + \frac{9}{115} a + \frac{2}{5}$, $\frac{1}{115} a^{12} - \frac{47}{115} a^{10} + \frac{13}{115} a^{9} - \frac{11}{23} a^{8} + \frac{37}{115} a^{7} + \frac{8}{115} a^{6} - \frac{11}{23} a^{5} + \frac{11}{115} a^{4} + \frac{2}{5} a^{3} + \frac{6}{23} a^{2} - \frac{6}{115} a - \frac{1}{5}$, $\frac{1}{115} a^{13} + \frac{29}{115} a^{10} + \frac{39}{115} a^{9} - \frac{2}{23} a^{8} + \frac{52}{115} a^{7} - \frac{4}{115} a^{6} + \frac{6}{23} a^{5} - \frac{27}{115} a^{4} + \frac{1}{5} a^{3} + \frac{4}{23} a^{2} + \frac{11}{23} a - \frac{1}{5}$, $\frac{1}{115} a^{14} + \frac{12}{115} a^{10} + \frac{47}{115} a^{9} - \frac{34}{115} a^{8} + \frac{8}{115} a^{7} + \frac{1}{5} a^{6} + \frac{4}{23} a^{5} + \frac{24}{115} a^{4} + \frac{39}{115} a^{3} - \frac{32}{115} a^{2} - \frac{54}{115} a + \frac{2}{5}$, $\frac{1}{805} a^{15} + \frac{3}{805} a^{14} - \frac{2}{805} a^{13} + \frac{1}{805} a^{12} + \frac{2}{805} a^{11} + \frac{48}{805} a^{10} - \frac{323}{805} a^{9} - \frac{234}{805} a^{8} + \frac{3}{7} a^{7} + \frac{11}{161} a^{6} + \frac{354}{805} a^{5} - \frac{359}{805} a^{4} + \frac{8}{161} a^{3} + \frac{31}{161} a^{2} + \frac{1}{35} a + \frac{17}{35}$, $\frac{1}{3092005} a^{16} + \frac{971}{3092005} a^{15} + \frac{26}{618401} a^{14} - \frac{2473}{618401} a^{13} - \frac{4252}{3092005} a^{12} - \frac{12261}{3092005} a^{11} + \frac{879071}{3092005} a^{10} - \frac{939083}{3092005} a^{9} + \frac{900931}{3092005} a^{8} + \frac{70359}{618401} a^{7} + \frac{6714}{134435} a^{6} + \frac{318163}{3092005} a^{5} + \frac{1329028}{3092005} a^{4} + \frac{183615}{618401} a^{3} + \frac{547222}{3092005} a^{2} + \frac{8828}{26887} a - \frac{277}{5845}$, $\frac{1}{87598326792481009925} a^{17} + \frac{7856155124668}{87598326792481009925} a^{16} + \frac{196415600983046}{544088986288701925} a^{15} + \frac{187074158022615706}{87598326792481009925} a^{14} + \frac{40234911636349907}{17519665358496201985} a^{13} + \frac{9817569919346076}{2502809336928028855} a^{12} + \frac{281679383685012722}{87598326792481009925} a^{11} - \frac{4985421698408238328}{87598326792481009925} a^{10} + \frac{86562145634379364}{544088986288701925} a^{9} - \frac{1631397365991108624}{3503933071699240397} a^{8} + \frac{27096760996359349576}{87598326792481009925} a^{7} + \frac{21806542860445405317}{87598326792481009925} a^{6} + \frac{505788784647135722}{3503933071699240397} a^{5} - \frac{14176065851399428458}{87598326792481009925} a^{4} + \frac{40169682017268010989}{87598326792481009925} a^{3} + \frac{1395918264017561178}{12514046684640144275} a^{2} + \frac{793058505240310409}{3808622904020913475} a - \frac{40432200822224069}{165592300174822325}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 99911.2053896 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.23.1 x3, 6.0.12167.1, 9.1.495755401801.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |