Normalized defining polynomial
\( x^{18} - 3 x^{17} - 2 x^{16} + 27 x^{15} - 63 x^{14} - 182 x^{13} + 326 x^{12} + 24 x^{11} + 1072 x^{10} + 3160 x^{9} + 1576 x^{8} + 3344 x^{7} + 7792 x^{6} + 7808 x^{5} + 30080 x^{4} + 60160 x^{3} + 60672 x^{2} + 26624 x + 4096 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5632074928630950758566400360448=-\,2^{18}\cdot 3^{9}\cdot 127^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} - \frac{1}{16} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} + \frac{3}{32} a^{8} + \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{8} a^{9} - \frac{1}{32} a^{8} + \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{1}{16} a^{9} + \frac{1}{32} a^{8} - \frac{1}{16} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{15} + \frac{1}{256} a^{14} - \frac{1}{128} a^{13} - \frac{1}{256} a^{12} + \frac{5}{256} a^{11} - \frac{7}{128} a^{10} - \frac{11}{128} a^{9} - \frac{1}{32} a^{8} - \frac{1}{32} a^{7} - \frac{5}{32} a^{6} - \frac{3}{32} a^{5} - \frac{3}{16} a^{4} - \frac{7}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{512} a^{16} - \frac{1}{512} a^{15} - \frac{1}{128} a^{14} + \frac{3}{512} a^{13} + \frac{7}{512} a^{12} + \frac{1}{64} a^{11} - \frac{13}{256} a^{10} + \frac{9}{128} a^{9} + \frac{5}{64} a^{8} - \frac{7}{64} a^{7} - \frac{9}{64} a^{6} - \frac{1}{32} a^{4} + \frac{3}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{1114142393256430556007698432} a^{17} + \frac{982471250617832094154817}{1114142393256430556007698432} a^{16} - \frac{537396447595166435428639}{557071196628215278003849216} a^{15} - \frac{5611907270319372120000445}{1114142393256430556007698432} a^{14} + \frac{5541729427679842527462829}{1114142393256430556007698432} a^{13} + \frac{3422066601920083140438399}{557071196628215278003849216} a^{12} + \frac{4019480469618146891729999}{557071196628215278003849216} a^{11} + \frac{2577593560332184340853643}{69633899578526909750481152} a^{10} + \frac{6023160507833522407020555}{69633899578526909750481152} a^{9} + \frac{5379577101790059203201787}{139267799157053819500962304} a^{8} + \frac{10216248075504577374019089}{139267799157053819500962304} a^{7} - \frac{11387633781411659091615837}{69633899578526909750481152} a^{6} - \frac{95485542878814627062051}{548298421878164643704576} a^{5} + \frac{3487382479987989592040961}{17408474894631727437620288} a^{4} - \frac{1989275850404078112608039}{8704237447315863718810144} a^{3} - \frac{1409776984945322315533285}{4352118723657931859405072} a^{2} + \frac{1812506547499303022917785}{4352118723657931859405072} a - \frac{229499798268852977675291}{1088029680914482964851268}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{693570908493955}{432739011821809664} a^{17} + \frac{2340308272355869}{432739011821809664} a^{16} + \frac{262576486421757}{216369505910904832} a^{15} - \frac{18976322657208169}{432739011821809664} a^{14} + \frac{50802472029220505}{432739011821809664} a^{13} + \frac{53823693559736835}{216369505910904832} a^{12} - \frac{133874644475789629}{216369505910904832} a^{11} + \frac{5121641378728171}{27046188238863104} a^{10} - \frac{47915558313508693}{27046188238863104} a^{9} - \frac{238981647733541057}{54092376477726208} a^{8} - \frac{45313337058619219}{54092376477726208} a^{7} - \frac{133093303032384041}{27046188238863104} a^{6} - \frac{290897290481288057}{27046188238863104} a^{5} - \frac{56579125697596667}{6761547059715776} a^{4} - \frac{152010996061114863}{3380773529857888} a^{3} - \frac{134790296096409437}{1690386764928944} a^{2} - \frac{112464181087348891}{1690386764928944} a - \frac{6773562299056895}{422596691232236} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 621058194.3189892 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1016.1, 6.0.435483.1, 6.0.27870912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $127$ | $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |