Normalized defining polynomial
\( x^{18} - 6 x^{17} + 53 x^{16} - 224 x^{15} + 1059 x^{14} - 3090 x^{13} + 9543 x^{12} - 18332 x^{11} + 38972 x^{10} - 39464 x^{9} + 60140 x^{8} + 22376 x^{7} + 29584 x^{6} + 113584 x^{5} + 243424 x^{4} - 171840 x^{3} + 703168 x^{2} - 494560 x + 271568 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5627055140868788987624861696=-\,2^{12}\cdot 11^{9}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{4} a^{7} - \frac{5}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{120} a^{12} - \frac{1}{30} a^{11} - \frac{1}{40} a^{10} + \frac{1}{30} a^{9} + \frac{7}{40} a^{8} - \frac{1}{5} a^{7} - \frac{29}{120} a^{6} - \frac{1}{3} a^{5} + \frac{11}{60} a^{4} + \frac{1}{15} a^{3} - \frac{4}{15} a^{2} + \frac{13}{30} a - \frac{7}{30}$, $\frac{1}{120} a^{13} + \frac{1}{120} a^{11} + \frac{1}{60} a^{10} + \frac{7}{120} a^{9} - \frac{1}{24} a^{7} - \frac{1}{20} a^{6} - \frac{7}{30} a^{5} + \frac{2}{15} a^{4} + \frac{1}{6} a^{3} - \frac{7}{15} a^{2} + \frac{1}{6} a + \frac{1}{15}$, $\frac{1}{120} a^{14} - \frac{1}{30} a^{11} - \frac{1}{30} a^{9} - \frac{13}{60} a^{8} - \frac{1}{10} a^{7} - \frac{29}{120} a^{6} - \frac{11}{30} a^{5} - \frac{7}{20} a^{4} - \frac{11}{30} a^{3} + \frac{13}{30} a^{2} - \frac{1}{30} a + \frac{7}{30}$, $\frac{1}{720} a^{15} - \frac{1}{360} a^{14} - \frac{1}{720} a^{13} - \frac{1}{360} a^{12} - \frac{11}{720} a^{11} + \frac{7}{180} a^{10} - \frac{7}{720} a^{9} + \frac{11}{360} a^{8} + \frac{17}{120} a^{7} + \frac{71}{360} a^{6} + \frac{43}{90} a^{5} + \frac{2}{5} a^{4} - \frac{41}{180} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a + \frac{5}{18}$, $\frac{1}{4601520} a^{16} - \frac{439}{1533840} a^{15} + \frac{10111}{4601520} a^{14} - \frac{25}{83664} a^{13} - \frac{4891}{1533840} a^{12} + \frac{547}{306768} a^{11} - \frac{4547}{4601520} a^{10} - \frac{10181}{920304} a^{9} - \frac{249313}{1150380} a^{8} + \frac{148279}{1150380} a^{7} - \frac{153287}{1150380} a^{6} + \frac{33821}{104580} a^{5} - \frac{22102}{57519} a^{4} - \frac{1369}{2772} a^{3} + \frac{27029}{191730} a^{2} - \frac{12349}{52290} a - \frac{2302}{26145}$, $\frac{1}{334624598441205997320758688480} a^{17} - \frac{825936008702678420131}{16731229922060299866037934424} a^{16} + \frac{37467167555031253830798397}{334624598441205997320758688480} a^{15} - \frac{808840239972668419840659}{1859025546895588874004214936} a^{14} + \frac{954282197927247458591372447}{334624598441205997320758688480} a^{13} - \frac{491679017496985389017407}{5070069673351606020011495280} a^{12} + \frac{473625343495358831303247731}{66924919688241199464151737696} a^{11} - \frac{38650273579510106629818273}{1327875390639706338574439240} a^{10} - \frac{511232252454164968366169377}{7605104510027409030017242920} a^{9} - \frac{881417125772580728833361851}{7967252343838238031446635440} a^{8} + \frac{19094661114604555506896422913}{83656149610301499330189672120} a^{7} - \frac{3965726876590123157906200397}{16731229922060299866037934424} a^{6} + \frac{40475426535728203507762226189}{83656149610301499330189672120} a^{5} + \frac{89141432818788937244691589}{1991813085959559507861658860} a^{4} - \frac{1396498933081875990881277787}{2987719628939339261792488290} a^{3} + \frac{16428655242906601708088448511}{41828074805150749665094836060} a^{2} + \frac{58415262301573742838539317}{126751741833790150500287382} a - \frac{147947282384701172026345897}{1901276127506852257504310730}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3932278.1508 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.12716.2 x3, 3.1.44.1 x3, 3.1.12716.1 x3, 3.1.3179.1 x3, 6.0.1778663216.2, 6.0.21296.1, 6.0.1778663216.1, 6.0.111166451.1, 9.1.22617481454656.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |