Normalized defining polynomial
\( x^{18} - 3 x^{17} + 237 x^{16} - 426 x^{15} + 25869 x^{14} - 32223 x^{13} + 1500495 x^{12} - 812343 x^{11} + 45514758 x^{10} - 16485100 x^{9} + 738641697 x^{8} - 274927533 x^{7} + 5911054881 x^{6} - 2813326287 x^{5} + 24611916219 x^{4} - 9490822527 x^{3} + 224587222647 x^{2} - 254465350584 x + 542046171673 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-561753924246716084864628955145607304138272768=-\,2^{12}\cdot 3^{31}\cdot 7^{14}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $306.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{4} + \frac{1}{9} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{2}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{99} a^{15} - \frac{2}{99} a^{14} - \frac{1}{33} a^{13} + \frac{5}{99} a^{12} - \frac{1}{33} a^{11} + \frac{7}{99} a^{10} + \frac{4}{33} a^{9} - \frac{1}{33} a^{8} - \frac{5}{33} a^{7} - \frac{8}{99} a^{6} + \frac{16}{99} a^{5} - \frac{1}{33} a^{4} + \frac{29}{99} a^{3} + \frac{4}{11} a^{2} - \frac{41}{99} a - \frac{4}{11}$, $\frac{1}{297} a^{16} + \frac{1}{297} a^{15} - \frac{1}{33} a^{14} - \frac{4}{297} a^{13} - \frac{10}{297} a^{12} + \frac{1}{33} a^{11} + \frac{2}{27} a^{10} - \frac{1}{27} a^{9} + \frac{1}{33} a^{8} + \frac{46}{297} a^{7} - \frac{8}{297} a^{6} + \frac{16}{33} a^{5} - \frac{13}{297} a^{4} + \frac{35}{297} a^{3} + \frac{5}{33} a^{2} - \frac{5}{297} a - \frac{119}{297}$, $\frac{1}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{17} + \frac{6070911245232871202608051227433488762057682729846392204340885529746346067093220811980390}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{16} - \frac{6288932720733459208302632338179672955963824598118780503082766941226122676524479173815675}{1246631011242997119523473465986530078646744630670069420639962678045527006215348550905313893} a^{15} + \frac{179632118798339351337071164199329208665313698871742567560927517287207390806583660387819912}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{14} + \frac{1222648462694554538854769702781324092356151852434128678496596966642957099192935656274336}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{13} + \frac{34765378725191970400957662161425580756668408292779798832446037603853593171083873030528606}{1246631011242997119523473465986530078646744630670069420639962678045527006215348550905313893} a^{12} - \frac{70591087182264755606532078098501293597873736615373741867836961415023240169576080555760199}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{11} - \frac{546625877159001306480046163399885948105995156985640740922038637774433643425313441422211159}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{10} - \frac{196084596254610045537555173004688375463735173567858932551935374602314818014934402929993278}{1246631011242997119523473465986530078646744630670069420639962678045527006215348550905313893} a^{9} + \frac{237635642339560732710480136852084023205376291351175649126373935562327676558896476526356222}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{8} + \frac{165342576194394425855738927063656599784927885300423417440991510155461160205557453309252295}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{7} + \frac{27024121310109929651807903848468248294378892236066299301738784587058774382995601873624659}{1246631011242997119523473465986530078646744630670069420639962678045527006215348550905313893} a^{6} + \frac{57616804323463747930298416246699161884132964334911657457599645550268667299221708306901228}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{5} - \frac{1197610152996013513258183955770569199711841044573274656007070059911206332922340732305376690}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{4} + \frac{9544381345497468624035259802139252760129502278577929256613381767906125300876503508158425}{1246631011242997119523473465986530078646744630670069420639962678045527006215348550905313893} a^{3} - \frac{611232876210699691167746372924120424993056225623617462811149807543122531096114170308110990}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a^{2} - \frac{1036602801647332910771674966091023138778811844992702940549052704887389546240166382369408289}{3739893033728991358570420397959590235940233892010208261919888034136581018646045652715941679} a - \frac{346848204241481037984118703059071372765208631405843003615816200523545389806263286184993601}{1246631011242997119523473465986530078646744630670069420639962678045527006215348550905313893}$
Class group and class number
$C_{6}\times C_{72}\times C_{772632}$, which has order $333777024$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4695974.091249611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-123}) \), 3.3.3969.2, 3.3.756.1, 6.0.118172497968.3, 6.0.3257129475243.6, 9.9.756284282720064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $41$ | 41.6.3.2 | $x^{6} - 1681 x^{2} + 895973$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 41.6.3.2 | $x^{6} - 1681 x^{2} + 895973$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 41.6.3.2 | $x^{6} - 1681 x^{2} + 895973$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |