Properties

Label 18.0.55590605665...0000.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{12}\cdot 3^{33}\cdot 5^{12}$
Root discriminant $34.78$
Ramified primes $2, 3, 5$
Class number $9$ (GRH)
Class group $[3, 3]$ (GRH)
Galois group $C_3^2 : C_2$ (as 18T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3468, 0, -9324, 0, 6696, 0, 1405, 0, -2481, 0, -102, 0, 295, 0, 42, 0, 3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 3*x^16 + 42*x^14 + 295*x^12 - 102*x^10 - 2481*x^8 + 1405*x^6 + 6696*x^4 - 9324*x^2 + 3468)
 
gp: K = bnfinit(x^18 + 3*x^16 + 42*x^14 + 295*x^12 - 102*x^10 - 2481*x^8 + 1405*x^6 + 6696*x^4 - 9324*x^2 + 3468, 1)
 

Normalized defining polynomial

\( x^{18} + 3 x^{16} + 42 x^{14} + 295 x^{12} - 102 x^{10} - 2481 x^{8} + 1405 x^{6} + 6696 x^{4} - 9324 x^{2} + 3468 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-5559060566555523000000000000=-\,2^{12}\cdot 3^{33}\cdot 5^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{76} a^{14} - \frac{1}{19} a^{12} + \frac{15}{76} a^{10} + \frac{15}{38} a^{8} + \frac{3}{76} a^{6} - \frac{1}{2} a^{5} - \frac{5}{38} a^{4} - \frac{1}{2} a^{3} - \frac{5}{19} a^{2} - \frac{6}{19}$, $\frac{1}{76} a^{15} - \frac{1}{19} a^{13} - \frac{1}{19} a^{11} - \frac{2}{19} a^{9} - \frac{1}{2} a^{8} - \frac{4}{19} a^{7} - \frac{1}{2} a^{6} + \frac{7}{19} a^{5} - \frac{1}{2} a^{4} + \frac{37}{76} a^{3} - \frac{6}{19} a - \frac{1}{2}$, $\frac{1}{561716} a^{16} + \frac{824}{140429} a^{14} + \frac{40737}{561716} a^{12} - \frac{25722}{140429} a^{10} + \frac{44891}{561716} a^{8} - \frac{47146}{140429} a^{6} - \frac{84549}{280858} a^{4} - \frac{1}{2} a^{3} + \frac{27099}{140429} a^{2} + \frac{62261}{140429}$, $\frac{1}{9549172} a^{17} + \frac{25469}{9549172} a^{15} - \frac{187525}{2387293} a^{13} + \frac{1072281}{9549172} a^{11} + \frac{25015}{280858} a^{9} + \frac{1563083}{9549172} a^{7} - \frac{1}{2} a^{6} - \frac{250399}{9549172} a^{5} - \frac{1}{2} a^{4} - \frac{645482}{2387293} a^{3} - \frac{1}{2} a^{2} + \frac{1052655}{2387293} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{10968}{6613} a^{17} - \frac{182361}{26452} a^{15} - \frac{513441}{6613} a^{13} - \frac{3829506}{6613} a^{11} - \frac{389777}{778} a^{9} + \frac{23367687}{6613} a^{7} + \frac{11629599}{6613} a^{5} - \frac{239777071}{26452} a^{3} + \frac{32870340}{6613} a + \frac{1}{2} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5038492.40867 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:S_3$ (as 18T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 6 conjugacy class representatives for $C_3^2 : C_2$
Character table for $C_3^2 : C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.300.1 x3, 3.1.243.1 x3, 3.1.24300.4 x3, 3.1.24300.2 x3, 6.0.270000.1, 6.0.177147.2, 6.0.1771470000.2, 6.0.1771470000.4, 9.1.43046721000000.4 x9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 9 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$3$3.6.11.9$x^{6} + 3$$6$$1$$11$$S_3$$[5/2]_{2}$
3.6.11.9$x^{6} + 3$$6$$1$$11$$S_3$$[5/2]_{2}$
3.6.11.9$x^{6} + 3$$6$$1$$11$$S_3$$[5/2]_{2}$
$5$5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$