Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} - 74 x^{15} + 252 x^{14} - 693 x^{13} + 1644 x^{12} - 3627 x^{11} + 7065 x^{10} - 11348 x^{9} + 14961 x^{8} - 16377 x^{7} + 14878 x^{6} - 11286 x^{5} + 7254 x^{4} - 3669 x^{3} + 1539 x^{2} - 585 x + 201 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-555906056655552300000000=-\,2^{8}\cdot 3^{33}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{11} - \frac{1}{6} a^{9} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{9} + \frac{1}{6} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{14} + \frac{1}{3} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{1}{6} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{18} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{7} + \frac{1}{18} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{1854} a^{16} - \frac{14}{927} a^{15} - \frac{35}{618} a^{14} - \frac{10}{309} a^{13} + \frac{23}{618} a^{12} + \frac{95}{618} a^{11} + \frac{23}{103} a^{10} + \frac{83}{206} a^{9} + \frac{131}{309} a^{8} + \frac{787}{1854} a^{7} + \frac{304}{927} a^{6} + \frac{65}{206} a^{5} + \frac{29}{206} a^{4} + \frac{39}{206} a^{3} - \frac{43}{206} a^{2} + \frac{85}{618} a - \frac{193}{618}$, $\frac{1}{36599866026053876982} a^{17} - \frac{1390465759647608}{6099977671008979497} a^{16} - \frac{313757534012801}{60696295233920194} a^{15} + \frac{94709866072896865}{2033325890336326499} a^{14} + \frac{58717888587353845}{4066651780672652998} a^{13} + \frac{482787957766928771}{12199955342017958994} a^{12} - \frac{304344628539086071}{6099977671008979497} a^{11} - \frac{1805351298401364779}{4066651780672652998} a^{10} - \frac{2568610531524918172}{6099977671008979497} a^{9} - \frac{5873144756285501927}{36599866026053876982} a^{8} + \frac{2269784126701989826}{6099977671008979497} a^{7} + \frac{1980355473297206261}{12199955342017958994} a^{6} + \frac{40367565221951677}{140229371747332862} a^{5} - \frac{1253623229817242171}{4066651780672652998} a^{4} + \frac{3289567634819021}{66666422633977918} a^{3} + \frac{5234796126272296585}{12199955342017958994} a^{2} + \frac{461741558694405053}{4066651780672652998} a + \frac{13359853068230204}{30348147616960097}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1153093228}{270538584909} a^{17} - \frac{1917199105}{90179528303} a^{16} + \frac{85342087}{1345963109} a^{15} - \frac{21031982145}{90179528303} a^{14} + \frac{70965726527}{90179528303} a^{13} - \frac{530576492120}{270538584909} a^{12} + \frac{396278301354}{90179528303} a^{11} - \frac{863504943345}{90179528303} a^{10} + \frac{4683645737975}{270538584909} a^{9} - \frac{6597579467435}{270538584909} a^{8} + \frac{2582600641584}{90179528303} a^{7} - \frac{7793753274995}{270538584909} a^{6} + \frac{75339314883}{3109638907} a^{5} - \frac{1675842562455}{90179528303} a^{4} + \frac{18592352103}{1478352923} a^{3} - \frac{535346193650}{90179528303} a^{2} + \frac{281548993374}{90179528303} a - \frac{923498848}{1345963109} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 295029.2522758723 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.243.1 x3, 6.0.177147.2, 9.3.143489070000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $5$ | 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |