Normalized defining polynomial
\( x^{18} + 120 x^{16} - 100 x^{15} + 5202 x^{14} - 6276 x^{13} + 216480 x^{12} - 393084 x^{11} + 3932949 x^{10} - 12808812 x^{9} + 44404560 x^{8} - 291814320 x^{7} + 1659031088 x^{6} + 12409534080 x^{5} + 110919615744 x^{4} + 424503642112 x^{3} + 1332058521600 x^{2} + 2249313484800 x + 2772434944000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-549602237265236146200328835310499852899314559=-\,3^{27}\cdot 7^{15}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $305.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1197=3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1197}(1,·)$, $\chi_{1197}(961,·)$, $\chi_{1197}(904,·)$, $\chi_{1197}(521,·)$, $\chi_{1197}(970,·)$, $\chi_{1197}(335,·)$, $\chi_{1197}(563,·)$, $\chi_{1197}(278,·)$, $\chi_{1197}(919,·)$, $\chi_{1197}(634,·)$, $\chi_{1197}(862,·)$, $\chi_{1197}(227,·)$, $\chi_{1197}(676,·)$, $\chi_{1197}(293,·)$, $\chi_{1197}(1196,·)$, $\chi_{1197}(1139,·)$, $\chi_{1197}(236,·)$, $\chi_{1197}(58,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{32} a^{6} - \frac{1}{32} a^{5} + \frac{1}{32} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{64} a^{6} + \frac{1}{32} a^{5} + \frac{5}{128} a^{4} - \frac{5}{32} a^{3} + \frac{7}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{128} a^{9} - \frac{1}{64} a^{7} - \frac{1}{32} a^{6} - \frac{3}{128} a^{5} + \frac{1}{32} a^{4} - \frac{7}{32} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{10} - \frac{1}{256} a^{9} - \frac{1}{128} a^{7} + \frac{5}{256} a^{6} - \frac{9}{256} a^{5} - \frac{7}{128} a^{4} + \frac{11}{64} a^{3} - \frac{7}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{1024} a^{11} + \frac{1}{1024} a^{10} + \frac{1}{512} a^{8} + \frac{5}{1024} a^{7} - \frac{7}{1024} a^{6} + \frac{9}{512} a^{5} - \frac{7}{256} a^{4} + \frac{5}{128} a^{3} - \frac{1}{32} a^{2}$, $\frac{1}{1024} a^{12} - \frac{1}{1024} a^{10} + \frac{1}{512} a^{9} + \frac{3}{1024} a^{8} - \frac{3}{256} a^{7} + \frac{25}{1024} a^{6} - \frac{23}{512} a^{5} - \frac{15}{256} a^{4} + \frac{23}{128} a^{3} + \frac{5}{32} a^{2} - \frac{1}{4} a$, $\frac{1}{20480} a^{13} - \frac{1}{2048} a^{12} - \frac{7}{20480} a^{11} - \frac{13}{10240} a^{10} - \frac{49}{20480} a^{9} - \frac{11}{10240} a^{8} + \frac{179}{20480} a^{7} + \frac{17}{10240} a^{6} - \frac{63}{5120} a^{5} - \frac{93}{2560} a^{4} - \frac{7}{32} a^{3} - \frac{1}{16} a^{2} - \frac{19}{40} a$, $\frac{1}{81920} a^{14} + \frac{1}{81920} a^{13} - \frac{37}{81920} a^{12} + \frac{17}{81920} a^{11} - \frac{11}{16384} a^{10} - \frac{161}{81920} a^{9} - \frac{223}{81920} a^{8} - \frac{437}{81920} a^{7} - \frac{679}{40960} a^{6} - \frac{399}{20480} a^{5} + \frac{417}{10240} a^{4} + \frac{9}{128} a^{3} + \frac{159}{640} a^{2} + \frac{23}{80} a$, $\frac{1}{327680} a^{15} + \frac{1}{327680} a^{14} - \frac{1}{327680} a^{13} - \frac{103}{327680} a^{12} + \frac{93}{327680} a^{11} + \frac{23}{327680} a^{10} - \frac{547}{327680} a^{9} - \frac{989}{327680} a^{8} + \frac{503}{163840} a^{7} - \frac{1293}{81920} a^{6} - \frac{757}{40960} a^{5} - \frac{637}{10240} a^{4} - \frac{81}{2560} a^{3} + \frac{91}{640} a^{2} - \frac{13}{80} a$, $\frac{1}{327680} a^{16} - \frac{1}{163840} a^{14} - \frac{3}{163840} a^{13} - \frac{31}{81920} a^{12} - \frac{51}{163840} a^{11} - \frac{253}{163840} a^{10} + \frac{627}{163840} a^{9} + \frac{523}{327680} a^{8} - \frac{1857}{163840} a^{7} - \frac{457}{16384} a^{6} - \frac{3}{8192} a^{5} - \frac{79}{10240} a^{4} + \frac{9}{512} a^{3} + \frac{5}{128} a^{2} + \frac{3}{16} a$, $\frac{1}{2172792705126322646425426626318628388264387799795278754611200} a^{17} - \frac{24003728764988335215536937097421684508685233731844693}{27159908814079033080317832828982854853304847497440984432640} a^{16} - \frac{12650847933742010842046630114832023696367451475181417}{54319817628158066160635665657965709706609694994881968865280} a^{15} - \frac{37774529686586619861693472554404210599028186367032009}{21727927051263226464254266263186283882643877997952787546112} a^{14} - \frac{26093481316090580193900714059373052176284888433347699879}{1086396352563161323212713313159314194132193899897639377305600} a^{13} - \frac{156953945744642283427868774972754048344141321869466895089}{543198176281580661606356656579657097066096949948819688652800} a^{12} + \frac{1881014610572403952140448945662040096419194282866257347}{6789977203519758270079458207245713713326211874360246108160} a^{11} - \frac{1027329004632104826422118115634835166619246338076469145431}{543198176281580661606356656579657097066096949948819688652800} a^{10} + \frac{4421219381461514910530377088578753159943879931996121616949}{2172792705126322646425426626318628388264387799795278754611200} a^{9} + \frac{1838634317573429913753813647854259756011728482245673336537}{543198176281580661606356656579657097066096949948819688652800} a^{8} + \frac{56459216246373615331618684027928170920574095007158539265}{5431981762815806616063566565796570970660969499488196886528} a^{7} - \frac{392717768536071855547775714879770577929710075898351652847}{27159908814079033080317832828982854853304847497440984432640} a^{6} - \frac{269605229402277786299294802063154306227834553955181656237}{135799544070395165401589164144914274266524237487204922163200} a^{5} + \frac{3752495165804880267864815640581786159701434950923215915}{678997720351975827007945820724571371332621187436024610816} a^{4} + \frac{763331489063322256736523201906557370412099589277491399549}{8487471504399697837599322759057142141657764842950307635200} a^{3} + \frac{180068892777162206390949697881395216202418029738218698699}{1060933938049962229699915344882142767707220605368788454400} a^{2} + \frac{1290660167705657682109060902016594982941272880299862387}{2652334845124905574249788362205356919268051513421971136} a + \frac{10965542985752499443513881596936688113111870023926380}{41442731955076649597652943159458701863563304897218299}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{277909656}$, which has order $8893108992$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10681224266.072006 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-399}) \), 3.3.29241.1, 3.3.1432809.2, 3.3.17689.2, 3.3.3969.1, 6.0.16716810419631.3, 6.0.819123710561919.3, 6.0.1123626489111.2, 6.0.2269040749479.8, 9.9.2941473244627851129.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 19 | Data not computed | ||||||