Normalized defining polynomial
\( x^{18} - 3 x^{17} + 13 x^{16} - 34 x^{15} + 89 x^{14} - 168 x^{13} + 310 x^{12} - 492 x^{11} + 672 x^{10} - 786 x^{9} + 1036 x^{8} - 1044 x^{7} + 928 x^{6} - 576 x^{5} + 379 x^{4} - 153 x^{3} + 51 x^{2} + 8 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-54949782158942378487808=-\,2^{12}\cdot 7^{15}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{2}$, $\frac{1}{3962545397341179428} a^{17} + \frac{224676366319577569}{990636349335294857} a^{16} + \frac{325386661386596625}{3962545397341179428} a^{15} - \frac{346171231981278129}{3962545397341179428} a^{14} - \frac{18371707875569934}{76202796102714989} a^{13} + \frac{430461141220438910}{990636349335294857} a^{12} + \frac{7730766444902509}{1981272698670589714} a^{11} - \frac{51786104146954903}{1981272698670589714} a^{10} - \frac{87562608741605691}{1981272698670589714} a^{9} - \frac{24954313206507621}{990636349335294857} a^{8} - \frac{145277704603750426}{990636349335294857} a^{7} + \frac{355861165161204243}{990636349335294857} a^{6} - \frac{386477765995737222}{990636349335294857} a^{5} - \frac{426503461277405167}{990636349335294857} a^{4} + \frac{1949296842234785835}{3962545397341179428} a^{3} - \frac{293452408278376783}{990636349335294857} a^{2} - \frac{1172189343572948049}{3962545397341179428} a + \frac{821975386547063819}{3962545397341179428}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{112075391173469115}{3962545397341179428} a^{17} - \frac{21354109484247591}{990636349335294857} a^{16} + \frac{780472308007355555}{3962545397341179428} a^{15} - \frac{797850338283581317}{3962545397341179428} a^{14} + \frac{92771434848219847}{152405592205429978} a^{13} + \frac{414741315494043175}{1981272698670589714} a^{12} - \frac{203916519172319166}{990636349335294857} a^{11} + \frac{2500480673523997270}{990636349335294857} a^{10} - \frac{6552161574179585486}{990636349335294857} a^{9} + \frac{22448979892988357913}{1981272698670589714} a^{8} - \frac{17418338800083091141}{1981272698670589714} a^{7} + \frac{45449647787107599899}{1981272698670589714} a^{6} - \frac{44260134734514755099}{1981272698670589714} a^{5} + \frac{46718658448653355569}{1981272698670589714} a^{4} - \frac{52777163693311870165}{3962545397341179428} a^{3} + \frac{21630654539792214629}{1981272698670589714} a^{2} - \frac{12542917482723644961}{3962545397341179428} a + \frac{2884140022879764165}{3962545397341179428} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23717.7684925 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 648 |
| The 26 conjugacy class representatives for t18n201 |
| Character table for t18n201 is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 9.5.12657150016.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 7 | Data not computed | ||||||
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 41.6.4.1 | $x^{6} + 1435 x^{3} + 2904768$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |