\\ Pari/GP code for working with number field 18.0.5492128139953102695344467968.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^18 - 9*y^17 + 48*y^16 - 180*y^15 + 441*y^14 - 651*y^13 + 561*y^12 - 441*y^11 + 975*y^10 - 2191*y^9 + 3441*y^8 - 4221*y^7 + 4194*y^6 - 3234*y^5 + 1869*y^4 - 801*y^3 + 258*y^2 - 60*y + 8, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 9*x^17 + 48*x^16 - 180*x^15 + 441*x^14 - 651*x^13 + 561*x^12 - 441*x^11 + 975*x^10 - 2191*x^9 + 3441*x^8 - 4221*x^7 + 4194*x^6 - 3234*x^5 + 1869*x^4 - 801*x^3 + 258*x^2 - 60*x + 8, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])