Normalized defining polynomial
\( x^{18} - 6 x^{17} + 12 x^{16} - 9 x^{14} - 63 x^{13} + 351 x^{12} - 873 x^{11} + 1341 x^{10} - 2241 x^{9} + 2970 x^{8} - 1890 x^{7} - 378 x^{6} + 1809 x^{5} + 2214 x^{4} + 1458 x^{3} + 891 x^{2} + 243 x + 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-547429103383751426513671875=-\,3^{21}\cdot 5^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{9} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{10} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{11} + \frac{1}{3} a^{5}$, $\frac{1}{54} a^{12} - \frac{1}{18} a^{11} - \frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{18} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{54} a^{13} - \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{54} a^{14} - \frac{1}{6} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{162} a^{15} + \frac{1}{27} a^{11} + \frac{1}{27} a^{9} - \frac{1}{18} a^{8} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{32238} a^{16} + \frac{67}{32238} a^{15} + \frac{1}{3582} a^{14} + \frac{19}{5373} a^{13} + \frac{29}{10746} a^{12} - \frac{1}{54} a^{11} + \frac{238}{5373} a^{10} + \frac{214}{5373} a^{9} + \frac{163}{3582} a^{7} - \frac{109}{3582} a^{6} + \frac{130}{1791} a^{5} - \frac{239}{3582} a^{4} - \frac{1559}{3582} a^{3} + \frac{203}{1194} a^{2} - \frac{277}{597} a + \frac{52}{199}$, $\frac{1}{16586646470954298} a^{17} + \frac{81215175545}{5528882156984766} a^{16} - \frac{13587928031513}{5528882156984766} a^{15} + \frac{2832397031194}{307160119832487} a^{14} + \frac{12752792498135}{1842960718994922} a^{13} - \frac{44296567200637}{5528882156984766} a^{12} + \frac{79533206343355}{2764441078492383} a^{11} + \frac{17066380377113}{921480359497461} a^{10} + \frac{9114508324477}{307160119832487} a^{9} - \frac{65415727637203}{1842960718994922} a^{8} - \frac{297488433467933}{1842960718994922} a^{7} + \frac{108644354026607}{921480359497461} a^{6} + \frac{73348608946765}{1842960718994922} a^{5} - \frac{130645777179247}{614320239664974} a^{4} + \frac{297101812294501}{614320239664974} a^{3} + \frac{127297949884642}{307160119832487} a^{2} + \frac{119243530428089}{307160119832487} a - \frac{66521622169961}{307160119832487}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{278297132452}{13891663711017} a^{17} + \frac{576704578472}{4630554570339} a^{16} - \frac{3713088970880}{13891663711017} a^{15} + \frac{262572285671}{4630554570339} a^{14} + \frac{2404203160006}{13891663711017} a^{13} + \frac{16886970072002}{13891663711017} a^{12} - \frac{33761547778060}{4630554570339} a^{11} + \frac{88285618296230}{4630554570339} a^{10} - \frac{143221311986834}{4630554570339} a^{9} + \frac{237468741706384}{4630554570339} a^{8} - \frac{323379659947972}{4630554570339} a^{7} + \frac{239113010539348}{4630554570339} a^{6} - \frac{2245089040334}{1543518190113} a^{5} - \frac{59717239346510}{1543518190113} a^{4} - \frac{17325719200816}{514506063371} a^{3} - \frac{34888442478302}{1543518190113} a^{2} - \frac{21261392464478}{1543518190113} a - \frac{2626860916942}{1543518190113} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7783705.8504994 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.675.1 x3, 6.0.1366875.1, 9.3.4502793796875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |