Normalized defining polynomial
\( x^{18} - 8 x^{17} + 27 x^{16} - 81 x^{15} + 291 x^{14} - 804 x^{13} + 1229 x^{12} + 793 x^{11} + 3756 x^{10} + 1662 x^{9} + 4817 x^{8} + 2413 x^{7} + 2650 x^{6} - 147 x^{5} + 464 x^{4} - 14 x^{3} + 28 x^{2} - x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-54381578892591924651626528931=-\,3^{9}\cdot 13^{12}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{785} a^{16} + \frac{343}{785} a^{15} - \frac{39}{785} a^{14} - \frac{172}{785} a^{13} + \frac{8}{157} a^{12} + \frac{334}{785} a^{11} - \frac{102}{785} a^{10} - \frac{34}{157} a^{9} - \frac{181}{785} a^{8} - \frac{119}{785} a^{7} - \frac{353}{785} a^{6} - \frac{79}{785} a^{5} + \frac{188}{785} a^{4} + \frac{392}{785} a^{3} + \frac{69}{785} a^{2} + \frac{47}{785} a - \frac{51}{785}$, $\frac{1}{289541481089685835098330575} a^{17} + \frac{11031230986549814281009}{57908296217937167019666115} a^{16} + \frac{75944995363110044579450212}{289541481089685835098330575} a^{15} + \frac{28825885097415939451919591}{57908296217937167019666115} a^{14} - \frac{139658053468408388478316019}{289541481089685835098330575} a^{13} - \frac{19598277467796657987757286}{289541481089685835098330575} a^{12} - \frac{132064499220707219046854}{289541481089685835098330575} a^{11} - \frac{113281992663038375758324644}{289541481089685835098330575} a^{10} - \frac{38396885066890741027592976}{289541481089685835098330575} a^{9} - \frac{131327630960676359412265916}{289541481089685835098330575} a^{8} + \frac{32382659896786778373024344}{289541481089685835098330575} a^{7} + \frac{1609737622300021893137844}{57908296217937167019666115} a^{6} + \frac{16944569253787254178313567}{57908296217937167019666115} a^{5} - \frac{71364448902218129520427892}{289541481089685835098330575} a^{4} + \frac{64342454015472693791903313}{289541481089685835098330575} a^{3} - \frac{357355646527217790278895}{11581659243587433403933223} a^{2} + \frac{94445971004526075958596478}{289541481089685835098330575} a + \frac{89742120639804952004961358}{289541481089685835098330575}$
Class group and class number
$C_{3}\times C_{3}\times C_{18}$, which has order $162$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48887.8339977 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), 3.1.8619.1 x3, 3.3.169.1, 6.0.3788645211.1, 6.0.22418019.1 x2, 6.0.3788645211.3, 9.3.640281040659.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.22418019.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |