Normalized defining polynomial
\( x^{18} - 43 x^{15} + 3718 x^{12} - 57335 x^{9} + 2773366 x^{6} + 11238213 x^{3} + 13997521 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-54291600394481055845270041612083=-\,3^{27}\cdot 19^{6}\cdot 73^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{1789468374251925484} a^{15} + \frac{1961292607169593}{68825706701997134} a^{12} + \frac{3615005508345853}{137651413403994268} a^{9} + \frac{37487708616590143}{447367093562981371} a^{6} + \frac{261517022601436879}{1789468374251925484} a^{3} + \frac{139335441776316975}{447367093562981371}$, $\frac{1}{431261878194714041644} a^{16} + \frac{1171998306541120871}{16586995315181309294} a^{13} - \frac{5089487290439442063}{33173990630362618588} a^{10} + \frac{932221895742552885}{107815469548678510411} a^{7} + \frac{186366227944801687215}{431261878194714041644} a^{4} + \frac{46665513172326379559}{107815469548678510411} a$, $\frac{1}{103934112644926084036204} a^{17} + \frac{76985475531398133565}{7994931741917391079708} a^{14} + \frac{1355044128554427920045}{7994931741917391079708} a^{11} - \frac{10885633536833559339971}{103934112644926084036204} a^{8} - \frac{17279739838941116999367}{103934112644926084036204} a^{5} - \frac{25796866108542215490815}{103934112644926084036204} a^{2}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{17372760042092093}{103934112644926084036204} a^{17} - \frac{60334685465171153}{7994931741917391079708} a^{14} + \frac{5096490511728453187}{7994931741917391079708} a^{11} - \frac{1143490527043905070027}{103934112644926084036204} a^{8} + \frac{50666845682732881557587}{103934112644926084036204} a^{5} + \frac{70358138985580163383475}{103934112644926084036204} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 362211450.25290346 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2\times S_3$ (as 18T17):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_3^2\times S_3$ |
| Character table for $C_3^2\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), 6.0.37865545227.2, Deg 6, \(\Q(\zeta_{9})\), 6.0.51941763.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |