Normalized defining polynomial
\( x^{18} - 3 x^{17} + 42 x^{16} - 105 x^{15} + 744 x^{14} - 1539 x^{13} + 7281 x^{12} - 12222 x^{11} + 43344 x^{10} - 57312 x^{9} + 163224 x^{8} - 165024 x^{7} + 393744 x^{6} - 293184 x^{5} + 594432 x^{4} - 304128 x^{3} + 516096 x^{2} - 147456 x + 196608 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-542325874896471806702825472=-\,2^{12}\cdot 3^{31}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{3}{8} a^{7} + \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{7}{16} a^{7} + \frac{3}{16} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{64} a^{13} + \frac{1}{64} a^{12} - \frac{1}{32} a^{11} - \frac{1}{64} a^{10} + \frac{1}{16} a^{9} - \frac{3}{64} a^{8} - \frac{27}{64} a^{7} + \frac{3}{32} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{256} a^{14} + \frac{1}{256} a^{13} - \frac{1}{128} a^{12} - \frac{1}{256} a^{11} + \frac{1}{64} a^{10} + \frac{29}{256} a^{9} - \frac{59}{256} a^{8} + \frac{35}{128} a^{7} - \frac{13}{32} a^{6} - \frac{3}{8} a^{5} + \frac{15}{32} a^{4} - \frac{1}{2} a^{3} - \frac{7}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{11264} a^{15} + \frac{13}{11264} a^{14} - \frac{35}{5632} a^{13} - \frac{201}{11264} a^{12} + \frac{3}{1408} a^{11} + \frac{189}{11264} a^{10} + \frac{1153}{11264} a^{9} + \frac{1289}{5632} a^{8} + \frac{255}{704} a^{7} - \frac{49}{352} a^{6} + \frac{57}{128} a^{5} + \frac{43}{352} a^{4} + \frac{17}{704} a^{3} - \frac{41}{176} a^{2} + \frac{1}{11} a + \frac{2}{11}$, $\frac{1}{585728} a^{16} - \frac{7}{585728} a^{15} - \frac{23}{26624} a^{14} - \frac{291}{53248} a^{13} + \frac{747}{146432} a^{12} + \frac{18189}{585728} a^{11} - \frac{20227}{585728} a^{10} + \frac{1141}{26624} a^{9} + \frac{15779}{73216} a^{8} + \frac{695}{4576} a^{7} + \frac{23203}{73216} a^{6} - \frac{931}{2288} a^{5} - \frac{13407}{36608} a^{4} - \frac{1295}{4576} a^{3} - \frac{21}{52} a^{2} + \frac{101}{286} a + \frac{12}{143}$, $\frac{1}{235926554886441582592} a^{17} + \frac{93439919015217}{235926554886441582592} a^{16} - \frac{5709411627093}{9074098264863137792} a^{15} + \frac{412688709049108335}{235926554886441582592} a^{14} + \frac{327071041531369757}{58981638721610395648} a^{13} + \frac{1921643007276744269}{235926554886441582592} a^{12} + \frac{453791954290827157}{235926554886441582592} a^{11} + \frac{5985030792310262115}{117963277443220791296} a^{10} - \frac{268774313749652467}{2268524566215784448} a^{9} + \frac{911936789913025963}{3686352420100649728} a^{8} + \frac{7740535119750645363}{29490819360805197824} a^{7} + \frac{84752943125599821}{283565570776973056} a^{6} - \frac{19846480546783841}{103114753009808384} a^{5} + \frac{84328746084748257}{460794052512581216} a^{4} + \frac{74379862959243519}{460794052512581216} a^{3} + \frac{2783674628525275}{17722848173560816} a^{2} + \frac{18498277191592597}{57599256564072652} a - \frac{3857180853361024}{14399814141018163}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{120901323}{2291050749952} a^{17} + \frac{6179527125}{25201558249472} a^{16} - \frac{163160903}{71595335936} a^{15} + \frac{218397202557}{25201558249472} a^{14} - \frac{515165887209}{12600779124736} a^{13} + \frac{3249379832451}{25201558249472} a^{12} - \frac{10057785726663}{25201558249472} a^{11} + \frac{1654077749667}{1575097390592} a^{10} - \frac{14606007385625}{6300389562368} a^{9} + \frac{8096410524117}{1575097390592} a^{8} - \frac{25827317054859}{3150194781184} a^{7} + \frac{24809827806969}{1575097390592} a^{6} - \frac{27499076557737}{1575097390592} a^{5} + \frac{23497193206431}{787548695296} a^{4} - \frac{187178177781}{8949416992} a^{3} + \frac{98917212609}{3076362091} a^{2} - \frac{3256131231}{279669281} a + \frac{48010907768}{3076362091} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1643556.992454405 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.13445270232768.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |