Normalized defining polynomial
\( x^{18} - 9 x^{17} + 99 x^{16} - 572 x^{15} + 4272 x^{14} - 20712 x^{13} + 124098 x^{12} - 504282 x^{11} + 2517105 x^{10} - 8744095 x^{9} + 37842855 x^{8} - 111524946 x^{7} + 414527356 x^{6} - 998800626 x^{5} + 3196420548 x^{4} - 6011436698 x^{3} + 15888370065 x^{2} - 18328267323 x + 33569437537 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-540917700754627690421790767951711121408=-\,2^{12}\cdot 3^{18}\cdot 7^{14}\cdot 43^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $141.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{143514756374606089349970882012300586220330738964413265668554532} a^{17} - \frac{463262827050671169821698568880433175648280645723140276841470}{35878689093651522337492720503075146555082684741103316417138633} a^{16} + \frac{6044672267680269600947185434735366308173955379763330721116653}{71757378187303044674985441006150293110165369482206632834277266} a^{15} - \frac{1952253066731839768354351195902782658233515482278096764698845}{71757378187303044674985441006150293110165369482206632834277266} a^{14} + \frac{4226516061112013713396511525095879423874394508747423143863583}{35878689093651522337492720503075146555082684741103316417138633} a^{13} - \frac{1735637188916809412595666974322335939538181176093241201052541}{71757378187303044674985441006150293110165369482206632834277266} a^{12} + \frac{7850651206403645148290473584952902213707145046307399194855060}{35878689093651522337492720503075146555082684741103316417138633} a^{11} - \frac{12273048839629215212244576128848365890297933452043759499730669}{71757378187303044674985441006150293110165369482206632834277266} a^{10} - \frac{16573002416726523328754227140108525489012531631297072058114449}{143514756374606089349970882012300586220330738964413265668554532} a^{9} + \frac{2975631263108586233949421920994871783371267143429122659221601}{71757378187303044674985441006150293110165369482206632834277266} a^{8} - \frac{1281395991697884485480254779262326181795532861400298095815031}{5519798322100234205768110846626945623858874575554356371867482} a^{7} + \frac{79437979906168051261398467884439213180691574592472852230087}{5519798322100234205768110846626945623858874575554356371867482} a^{6} + \frac{6383158855393326582829134068603348684089326130055785675067497}{35878689093651522337492720503075146555082684741103316417138633} a^{5} - \frac{10925115756080383532351405269817053567026639280085450683238301}{35878689093651522337492720503075146555082684741103316417138633} a^{4} + \frac{11873113981562145047301238359359032814990763744347461908727701}{35878689093651522337492720503075146555082684741103316417138633} a^{3} - \frac{1480750831656687123104830965317950269106930898383604056152633}{5519798322100234205768110846626945623858874575554356371867482} a^{2} + \frac{47099790740752206843428217667115511124932211722263956431565235}{143514756374606089349970882012300586220330738964413265668554532} a - \frac{30914842177817440983136662420464651284811030773141835374248073}{71757378187303044674985441006150293110165369482206632834277266}$
Class group and class number
$C_{4}\times C_{527148}$, which has order $2108592$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296124.35954857944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), \(\Q(\zeta_{7})^+\), 3.3.756.1, 6.0.190896307.1, 6.0.45441112752.2, 9.9.1037426999616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $43$ | 43.6.3.2 | $x^{6} - 1849 x^{2} + 795070$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 43.6.3.2 | $x^{6} - 1849 x^{2} + 795070$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 43.6.3.2 | $x^{6} - 1849 x^{2} + 795070$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |