Normalized defining polynomial
\( x^{18} + 22 x^{16} + 178 x^{14} + 924 x^{12} + 2865 x^{10} + 2454 x^{8} + 3020 x^{6} + 2824 x^{4} + 4736 x^{2} + 512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5363290857327411623968636928=-\,2^{27}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} + \frac{1}{16} a^{6} + \frac{1}{16} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} + \frac{1}{32} a^{7} - \frac{1}{32} a^{6} + \frac{1}{32} a^{5} - \frac{1}{32} a^{4} - \frac{1}{16} a^{3} + \frac{1}{16} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{96} a^{12} + \frac{1}{24} a^{8} - \frac{1}{16} a^{6} - \frac{7}{32} a^{4} - \frac{1}{2} a^{3} + \frac{11}{48} a^{2} + \frac{1}{6}$, $\frac{1}{96} a^{13} + \frac{1}{24} a^{9} - \frac{1}{16} a^{7} - \frac{7}{32} a^{5} + \frac{11}{48} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{384} a^{14} + \frac{5}{192} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{3}{128} a^{6} - \frac{7}{48} a^{4} - \frac{1}{8} a^{3} - \frac{41}{96} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{1536} a^{15} - \frac{1}{384} a^{13} + \frac{5}{768} a^{11} + \frac{7}{192} a^{9} + \frac{43}{512} a^{7} + \frac{7}{384} a^{5} - \frac{1}{4} a^{4} + \frac{27}{128} a^{3} - \frac{1}{4} a^{2} - \frac{5}{48} a - \frac{1}{2}$, $\frac{1}{135188054016} a^{16} - \frac{23385839}{33797013504} a^{14} + \frac{113821223}{22531342336} a^{12} + \frac{208045493}{16898506752} a^{10} + \frac{3750895457}{135188054016} a^{8} - \frac{4019921855}{33797013504} a^{6} - \frac{5235091807}{33797013504} a^{4} - \frac{1}{2} a^{3} + \frac{130259497}{704104448} a^{2} - \frac{231091879}{528078336}$, $\frac{1}{135188054016} a^{17} - \frac{1382575}{33797013504} a^{15} + \frac{165437557}{67594027008} a^{13} - \frac{210016523}{16898506752} a^{11} - \frac{1}{32} a^{10} - \frac{3994253471}{135188054016} a^{9} + \frac{1}{32} a^{8} - \frac{2237657471}{33797013504} a^{7} - \frac{1}{32} a^{6} - \frac{483510133}{11265671168} a^{5} + \frac{7}{32} a^{4} + \frac{322788057}{704104448} a^{3} + \frac{5}{16} a^{2} + \frac{241978297}{528078336} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 194465438.339 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 3.1.14792.1 x3, 3.3.1849.1, 6.0.1750426112.1, 6.0.1750426112.2, 6.0.946688.1 x2, 9.3.3236537881088.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.946688.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $43$ | 43.9.6.1 | $x^{9} + 1290 x^{6} + 552851 x^{3} + 79507000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 43.9.6.1 | $x^{9} + 1290 x^{6} + 552851 x^{3} + 79507000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |