Properties

Label 18.0.53542251993...4671.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{21}\cdot 13^{15}$
Root discriminant $30.54$
Ramified primes $3, 13$
Class number $12$ (GRH)
Class group $[12]$ (GRH)
Galois group $S_3 \times C_6$ (as 18T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15625, 0, 0, -4125, 0, 0, 3187, 0, 0, -1057, 0, 0, 193, 0, 0, -17, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 17*x^15 + 193*x^12 - 1057*x^9 + 3187*x^6 - 4125*x^3 + 15625)
 
gp: K = bnfinit(x^18 - 17*x^15 + 193*x^12 - 1057*x^9 + 3187*x^6 - 4125*x^3 + 15625, 1)
 

Normalized defining polynomial

\( x^{18} - 17 x^{15} + 193 x^{12} - 1057 x^{9} + 3187 x^{6} - 4125 x^{3} + 15625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-535422519938359574117644671=-\,3^{21}\cdot 13^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{15} a^{10} - \frac{4}{15} a^{7} + \frac{2}{5} a^{4} + \frac{1}{15} a$, $\frac{1}{75} a^{11} + \frac{11}{75} a^{8} - \frac{8}{25} a^{5} - \frac{29}{75} a^{2}$, $\frac{1}{375} a^{12} - \frac{14}{375} a^{9} + \frac{151}{375} a^{6} - \frac{104}{375} a^{3} + \frac{1}{3}$, $\frac{1}{375} a^{13} + \frac{11}{375} a^{10} + \frac{17}{125} a^{7} + \frac{46}{375} a^{4} + \frac{2}{5} a$, $\frac{1}{375} a^{14} + \frac{1}{375} a^{11} - \frac{59}{375} a^{8} - \frac{89}{375} a^{5} + \frac{13}{75} a^{2}$, $\frac{1}{18428625} a^{15} + \frac{1}{1125} a^{14} + \frac{1}{1125} a^{13} - \frac{20978}{18428625} a^{12} + \frac{2}{375} a^{11} + \frac{11}{1125} a^{10} - \frac{2304853}{18428625} a^{9} - \frac{379}{1125} a^{8} + \frac{17}{375} a^{7} - \frac{1786181}{6142875} a^{6} + \frac{166}{1125} a^{5} + \frac{46}{1125} a^{4} - \frac{5469994}{18428625} a^{3} - \frac{16}{225} a^{2} + \frac{2}{15} a - \frac{23266}{147429}$, $\frac{1}{92143125} a^{16} - \frac{28834}{30714375} a^{13} + \frac{1}{1125} a^{12} - \frac{1}{225} a^{11} + \frac{220036}{30714375} a^{10} + \frac{37}{375} a^{9} - \frac{86}{225} a^{8} - \frac{13957264}{30714375} a^{7} - \frac{349}{1125} a^{6} + \frac{8}{75} a^{5} - \frac{23226998}{92143125} a^{4} - \frac{104}{1125} a^{3} - \frac{46}{225} a^{2} + \frac{15004}{147429} a + \frac{2}{9}$, $\frac{1}{460715625} a^{17} - \frac{36913}{51190625} a^{14} - \frac{1}{1125} a^{13} - \frac{1}{1125} a^{12} - \frac{226973}{51190625} a^{11} - \frac{4}{125} a^{10} + \frac{139}{1125} a^{9} + \frac{12579956}{153571875} a^{8} + \frac{49}{1125} a^{7} + \frac{158}{375} a^{6} - \frac{126673013}{460715625} a^{5} + \frac{554}{1125} a^{4} - \frac{271}{1125} a^{3} - \frac{956983}{3685725} a^{2} - \frac{7}{45} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{12}$, which has order $12$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 305948.58795593923 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6\times S_3$ (as 18T6):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 18 conjugacy class representatives for $S_3 \times C_6$
Character table for $S_3 \times C_6$

Intermediate fields

\(\Q(\sqrt{-39}) \), 3.3.169.1, 3.1.4563.1, 6.0.812017791.2, 6.0.10024911.1, 9.3.95006081547.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 12 sibling: data not computed
Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$13$13.6.5.2$x^{6} - 13$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.5.2$x^{6} - 13$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.5.2$x^{6} - 13$$6$$1$$5$$C_6$$[\ ]_{6}$