Normalized defining polynomial
\( x^{18} - 6 x^{17} + 36 x^{16} - 107 x^{15} + 309 x^{14} - 495 x^{13} + 865 x^{12} - 717 x^{11} + 1596 x^{10} - 1525 x^{9} + 4785 x^{8} - 768 x^{7} + 6151 x^{6} - 5124 x^{5} + 18516 x^{4} - 7431 x^{3} + 6084 x^{2} - 3555 x + 6241 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-535422519938359574117644671=-\,3^{21}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{16} a^{5} - \frac{3}{16} a^{4} + \frac{5}{16} a^{3} + \frac{1}{8} a^{2} + \frac{5}{16} a + \frac{3}{16}$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{11} + \frac{1}{16} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{16} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} + \frac{1}{8} a^{3} - \frac{3}{16} a^{2} - \frac{5}{16} a - \frac{1}{2}$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{5} + \frac{1}{16} a^{4} - \frac{1}{4} a^{3} + \frac{5}{16} a^{2} + \frac{7}{16} a + \frac{1}{16}$, $\frac{1}{160} a^{15} - \frac{3}{160} a^{14} + \frac{3}{160} a^{13} - \frac{3}{160} a^{12} + \frac{19}{160} a^{11} + \frac{3}{160} a^{10} + \frac{9}{160} a^{9} - \frac{1}{32} a^{8} + \frac{7}{80} a^{7} - \frac{9}{40} a^{6} + \frac{13}{80} a^{5} - \frac{1}{40} a^{4} - \frac{73}{160} a^{3} - \frac{49}{160} a^{2} + \frac{9}{160} a + \frac{33}{160}$, $\frac{1}{12640} a^{16} - \frac{1}{1264} a^{15} + \frac{117}{6320} a^{14} - \frac{87}{6320} a^{13} - \frac{9}{632} a^{12} + \frac{141}{1264} a^{11} - \frac{17}{790} a^{10} + \frac{541}{6320} a^{9} + \frac{349}{12640} a^{8} - \frac{671}{3160} a^{7} + \frac{1559}{6320} a^{6} + \frac{83}{1580} a^{5} + \frac{383}{2528} a^{4} + \frac{1271}{6320} a^{3} + \frac{33}{3160} a^{2} - \frac{551}{1264} a + \frac{41}{160}$, $\frac{1}{313808538557592562167315680} a^{17} - \frac{2371816746330192519271}{313808538557592562167315680} a^{16} + \frac{108734358036895169617049}{78452134639398140541828920} a^{15} + \frac{308108575278443653576823}{156904269278796281083657840} a^{14} + \frac{820725684611754020181487}{31380853855759256216731568} a^{13} + \frac{196422735497774019712372}{9806516829924767567728615} a^{12} + \frac{1486762588294262042035401}{19613033659849535135457230} a^{11} + \frac{1458488338007155505546925}{31380853855759256216731568} a^{10} + \frac{12078379722434239779831}{105837618400537120461152} a^{9} - \frac{21414374679809416540123573}{313808538557592562167315680} a^{8} + \frac{353266365111712571545351}{15690426927879628108365784} a^{7} + \frac{3573377043728928701342071}{78452134639398140541828920} a^{6} + \frac{42160616292575141253568753}{313808538557592562167315680} a^{5} - \frac{13240802887097285429011821}{313808538557592562167315680} a^{4} - \frac{14495854817341416393451717}{39226067319699070270914460} a^{3} + \frac{1961477181390767820248705}{15690426927879628108365784} a^{2} + \frac{121989949987028705868035837}{313808538557592562167315680} a + \frac{1631685016543961144241783}{3972259981741678002117920}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 327986.481487 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.1.351.1 x3, 3.3.169.1, 6.0.4804839.1, 6.0.10024911.1, 6.0.812017791.1 x2, 9.3.1235079060111.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.812017791.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |