Normalized defining polynomial
\( x^{18} + 57 x^{16} - 114 x^{15} + 25992 x^{14} + 17328 x^{13} + 1534972 x^{12} - 1975392 x^{11} + 167764281 x^{10} + 223754298 x^{9} + 17029175391 x^{8} + 4324050780 x^{7} + 341322297569 x^{6} - 127425006738 x^{5} + 58784088299895 x^{4} + 125502023684818 x^{3} + 3925005531309753 x^{2} + 3316967769886236 x + 43904083722291521 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5336108477246594974427370451986506423645848731648=-\,2^{18}\cdot 3^{24}\cdot 7^{15}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $509.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(4483,·)$, $\chi_{4788}(2053,·)$, $\chi_{4788}(961,·)$, $\chi_{4788}(3751,·)$, $\chi_{4788}(2383,·)$, $\chi_{4788}(277,·)$, $\chi_{4788}(3799,·)$, $\chi_{4788}(1369,·)$, $\chi_{4788}(31,·)$, $\chi_{4788}(1699,·)$, $\chi_{4788}(4135,·)$, $\chi_{4788}(4225,·)$, $\chi_{4788}(2857,·)$, $\chi_{4788}(1063,·)$, $\chi_{4788}(3697,·)$, $\chi_{4788}(1399,·)$, $\chi_{4788}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{19} a^{3}$, $\frac{1}{19} a^{4}$, $\frac{1}{19} a^{5}$, $\frac{1}{361} a^{6}$, $\frac{1}{361} a^{7}$, $\frac{1}{13718} a^{8} - \frac{1}{361} a^{5} - \frac{1}{38} a^{4} + \frac{1}{38} a^{2} - \frac{1}{2}$, $\frac{1}{13718} a^{9} - \frac{1}{38} a^{5} - \frac{1}{38} a^{3} - \frac{1}{2} a$, $\frac{1}{13718} a^{10} - \frac{1}{722} a^{6} - \frac{1}{38} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{260642} a^{11} - \frac{1}{722} a^{7} - \frac{3}{722} a^{5} - \frac{1}{38} a^{3} + \frac{1}{19} a^{2}$, $\frac{1}{1303210} a^{12} + \frac{1}{651605} a^{11} + \frac{1}{34295} a^{10} + \frac{1}{1805} a^{7} - \frac{1}{722} a^{6} + \frac{16}{1805} a^{5} + \frac{23}{190} a^{2} + \frac{1}{10}$, $\frac{1}{24760990} a^{13} + \frac{1}{1303210} a^{11} - \frac{2}{651605} a^{10} + \frac{1}{34295} a^{8} + \frac{3}{34295} a^{7} - \frac{1}{1805} a^{6} + \frac{69}{3610} a^{5} - \frac{8}{361} a^{4} + \frac{1}{95} a^{3} - \frac{17}{95} a^{2} + \frac{1}{190} a + \frac{1}{5}$, $\frac{1}{24760990} a^{14} - \frac{1}{1303210} a^{11} - \frac{1}{34295} a^{10} + \frac{1}{34295} a^{9} + \frac{1}{68590} a^{8} + \frac{1}{3610} a^{7} + \frac{2}{1805} a^{6} + \frac{73}{3610} a^{5} - \frac{3}{190} a^{4} + \frac{1}{190} a^{3} - \frac{17}{190} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{24760990} a^{15} - \frac{1}{1303210} a^{11} - \frac{1}{68590} a^{10} + \frac{1}{68590} a^{9} - \frac{1}{68590} a^{8} + \frac{1}{3610} a^{7} + \frac{3}{3610} a^{6} - \frac{9}{361} a^{5} - \frac{2}{95} a^{4} - \frac{1}{95} a^{3} + \frac{8}{95} a^{2} + \frac{2}{5} a + \frac{1}{10}$, $\frac{1}{54677502831703041743439113820020} a^{16} - \frac{4991741753455884341668}{719440826732934759782093602895} a^{15} + \frac{1458818082252080522061}{143888165346586951956418720579} a^{14} - \frac{18535047172183602013267}{1438881653465869519564187205790} a^{13} - \frac{3166166756202428647879}{15146122668061784416465128482} a^{12} + \frac{9669312747798433269908}{7573061334030892208232564241} a^{11} + \frac{405984225676889369308121}{75730613340308922082325642410} a^{10} + \frac{59260563280268209520437}{3985821754753101162227665390} a^{9} - \frac{109993114689156411519}{1594328701901240464891066156} a^{8} + \frac{4933244914738447725079479}{3985821754753101162227665390} a^{7} + \frac{271100370346713952974431}{209780092355426376959350810} a^{6} + \frac{1714555200626046204415849}{209780092355426376959350810} a^{5} + \frac{26151409634601033122771}{2046635047370013433749764} a^{4} - \frac{19752251432445822034253}{1104105749239086194522899} a^{3} - \frac{306925922424708575170347}{2208211498478172389045798} a^{2} + \frac{335536896990680096635872}{1104105749239086194522899} a - \frac{469648154441904604189131}{1162216578146406520550420}$, $\frac{1}{6509068847593757819559489351810133164907123940} a^{17} + \frac{50801768932319}{6509068847593757819559489351810133164907123940} a^{16} + \frac{2752355106117754751869027294597675779}{171291285462993626830512877679214030655450630} a^{15} + \frac{1012849901353884070842189178042559633}{171291285462993626830512877679214030655450630} a^{14} + \frac{1402551969655864813450106878596936584}{85645642731496813415256438839607015327725315} a^{13} - \frac{2959654119752442781270192264655846627}{9015330813841769833184888298906001613444770} a^{12} - \frac{8549567758902596433895762020278659241}{4507665406920884916592444149453000806722385} a^{11} + \frac{85213083943504912150397301553666367191}{4507665406920884916592444149453000806722385} a^{10} + \frac{2481215418647123817077863609949133175}{189796438186142522803892385240126349756732} a^{9} - \frac{6270137081603822476443081225370498671}{948982190930712614019461926200631748783660} a^{8} - \frac{506277799601721088414551533816214271483}{474491095465356307009730963100315874391830} a^{7} + \frac{2855331360338099432094063548641950493}{2497321555080822668472268226843767759957} a^{6} + \frac{525735257533360186118825415148445057359}{49946431101616453369445364536875355199140} a^{5} - \frac{1075569947186600483075683576356079120527}{49946431101616453369445364536875355199140} a^{4} - \frac{5827856484773424451505253928430252814}{657189882916005965387439007064149410515} a^{3} + \frac{224483499921455968357157404700452326717}{1314379765832011930774878014128298821030} a^{2} + \frac{487130117957186856128610255670384525717}{2628759531664023861549756028256597642060} a - \frac{50223073138183842459010411809903109181}{138355764824422308502618738329294612740}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{28}\times C_{4299204}$, which has order $1926043392$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42198260.232521206 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 19 | Data not computed | ||||||