Normalized defining polynomial
\( x^{18} + 273 x^{16} - 168 x^{15} + 38934 x^{14} - 4704 x^{13} + 3256078 x^{12} - 740880 x^{11} + 177123093 x^{10} + 94202304 x^{9} + 8415651069 x^{8} + 10024559160 x^{7} + 241142568884 x^{6} + 271774244448 x^{5} + 6941687396868 x^{4} + 23218361290432 x^{3} + 193558495474176 x^{2} + 420721169799168 x + 1331820844863488 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5336108477246594974427370451986506423645848731648=-\,2^{18}\cdot 3^{24}\cdot 7^{15}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $509.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(2155,·)$, $\chi_{4788}(961,·)$, $\chi_{4788}(3979,·)$, $\chi_{4788}(4561,·)$, $\chi_{4788}(3649,·)$, $\chi_{4788}(31,·)$, $\chi_{4788}(1699,·)$, $\chi_{4788}(4453,·)$, $\chi_{4788}(1063,·)$, $\chi_{4788}(4225,·)$, $\chi_{4788}(2539,·)$, $\chi_{4788}(3313,·)$, $\chi_{4788}(2887,·)$, $\chi_{4788}(2995,·)$, $\chi_{4788}(2101,·)$, $\chi_{4788}(607,·)$, $\chi_{4788}(1873,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{28} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{56} a^{7} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{56} a^{8} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{112} a^{9} + \frac{1}{16} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{112} a^{10} - \frac{1}{112} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{1568} a^{11} - \frac{1}{224} a^{10} + \frac{1}{224} a^{7} + \frac{1}{224} a^{6} + \frac{5}{56} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{125440} a^{12} - \frac{67}{17920} a^{10} - \frac{1}{1120} a^{9} + \frac{11}{2560} a^{8} + \frac{3}{1120} a^{7} + \frac{319}{17920} a^{6} + \frac{11}{80} a^{5} - \frac{41}{640} a^{4} - \frac{31}{80} a^{3} + \frac{217}{640} a^{2} - \frac{17}{80} a + \frac{7}{20}$, $\frac{1}{250880} a^{13} + \frac{11}{250880} a^{11} - \frac{1}{2240} a^{10} + \frac{11}{5120} a^{9} - \frac{17}{2240} a^{8} + \frac{159}{35840} a^{7} - \frac{3}{1120} a^{6} - \frac{1247}{8960} a^{5} - \frac{21}{160} a^{4} + \frac{57}{1280} a^{3} + \frac{3}{160} a^{2} - \frac{3}{40} a$, $\frac{1}{501760} a^{14} - \frac{1}{501760} a^{13} - \frac{1}{501760} a^{12} - \frac{123}{501760} a^{11} - \frac{9}{10240} a^{10} + \frac{163}{71680} a^{9} - \frac{493}{71680} a^{8} + \frac{449}{71680} a^{7} - \frac{1}{896} a^{6} + \frac{2199}{17920} a^{5} - \frac{243}{2560} a^{4} + \frac{1023}{2560} a^{3} - \frac{281}{640} a^{2} - \frac{1}{5} a - \frac{1}{20}$, $\frac{1}{501760} a^{15} + \frac{1}{5120} a^{11} + \frac{1}{896} a^{10} - \frac{3}{896} a^{9} - \frac{401}{71680} a^{7} - \frac{15}{896} a^{6} - \frac{149}{640} a^{5} - \frac{3}{16} a^{4} - \frac{19}{2560} a^{3} - \frac{7}{64} a^{2} - \frac{13}{80} a - \frac{1}{5}$, $\frac{1}{12203373376954375745717951260549120} a^{16} + \frac{63232814406159102015625883}{435834763462656276632783973591040} a^{15} - \frac{552058663154874118064116907}{871669526925312553265567947182080} a^{14} + \frac{421042040259265191888345267}{435834763462656276632783973591040} a^{13} - \frac{272950349399827454235197033}{87166952692531255326556794718208} a^{12} + \frac{13726915776553831935715758629}{62262109066093753804683424798720} a^{11} - \frac{1085433562528581549538608443161}{871669526925312553265567947182080} a^{10} - \frac{55302758323606179269132623649}{62262109066093753804683424798720} a^{9} - \frac{37608553507532775033788556267}{7115669607553571863392391405568} a^{8} + \frac{2247357814028851765046688863}{31131054533046876902341712399360} a^{7} - \frac{71295621250531928650795725951}{6226210906609375380468342479872} a^{6} + \frac{306570944661305388088487368573}{2223646752360491207310122314240} a^{5} - \frac{11420932075755445811093987658573}{62262109066093753804683424798720} a^{4} - \frac{114096590719359734500796957653}{555911688090122801827530578560} a^{3} - \frac{48337783963964559646648783427}{555911688090122801827530578560} a^{2} - \frac{32701432462726518818367702617}{69488961011265350228441322320} a - \frac{6446802830088593276161940447}{17372240252816337557110330580}$, $\frac{1}{97277502561787279580272952576484687002785455063040} a^{17} + \frac{978184041854787}{97277502561787279580272952576484687002785455063040} a^{16} + \frac{2064384507682067717696205687593245371968639}{6948393040127662827162353755463191928770389647360} a^{15} + \frac{59144536243616101037746702559492512204149}{1389678608025532565432470751092638385754077929472} a^{14} + \frac{427204701998246141145906544252877423102751}{868549130015957853395294219432898991096298705920} a^{13} - \frac{1428174781938964033534621191864255894283239}{434274565007978926697647109716449495548149352960} a^{12} - \frac{863705121941651199974889220480819141245909047}{6948393040127662827162353755463191928770389647360} a^{11} - \frac{5679650400184026642642332295404542107416124289}{1389678608025532565432470751092638385754077929472} a^{10} + \frac{3647871866760178273505991109604715845527294867}{1985255154322189379189243930132340551077254184960} a^{9} - \frac{9307185588601503268293487560314325883521633687}{1985255154322189379189243930132340551077254184960} a^{8} + \frac{50672028803570251201840115700787812357734571}{15509805893142104524915968204158910555291048320} a^{7} + \frac{903356389841714547508740094616754863740306547}{248156894290273672398655491266542568884656773120} a^{6} + \frac{1450996846048269010822174900956890452594976331}{99262757716109468959462196506617027553862709248} a^{5} + \frac{32506030969077095155227312730611524010083776237}{496313788580547344797310982533085137769313546240} a^{4} - \frac{66032947677484336944780113746732665732172563}{4431373112326315578547419486902545872940299520} a^{3} - \frac{417875737799819904569598598149538070021337613}{2215686556163157789273709743451272936470149760} a^{2} - \frac{4078799173288663337925005945329708226529381}{276960819520394723659213717931409117058768720} a - \frac{1039752906977187089258320080364663013173910}{3462010244004934045740171474142613963234609}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{28}\times C_{25284}$, which has order $2899771392$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10681224266.072006 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-133}) \), 3.3.29241.1, 3.3.1432809.2, 3.3.3969.1, 3.3.17689.2, 6.0.356625288952128.2, 6.0.17474639158654272.2, 6.0.48406202655552.5, 6.0.2663410937152.2, 9.9.2941473244627851129.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 19 | Data not computed | ||||||