Normalized defining polynomial
\( x^{18} + 108 x^{16} + 5679 x^{14} + 187740 x^{12} + 4265379 x^{10} - 2 x^{9} + 68738148 x^{8} + 1026 x^{7} + 783654186 x^{6} - 54738 x^{5} + 6087814200 x^{4} + 592092 x^{3} + 29249550873 x^{2} - 1092690 x + 66331746447 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5333686073828961010482481752887525376=-\,2^{27}\cdot 3^{44}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1512=2^{3}\cdot 3^{3}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1512}(1,·)$, $\chi_{1512}(517,·)$, $\chi_{1512}(1345,·)$, $\chi_{1512}(841,·)$, $\chi_{1512}(13,·)$, $\chi_{1512}(1357,·)$, $\chi_{1512}(337,·)$, $\chi_{1512}(853,·)$, $\chi_{1512}(1177,·)$, $\chi_{1512}(349,·)$, $\chi_{1512}(673,·)$, $\chi_{1512}(1189,·)$, $\chi_{1512}(169,·)$, $\chi_{1512}(685,·)$, $\chi_{1512}(1009,·)$, $\chi_{1512}(181,·)$, $\chi_{1512}(505,·)$, $\chi_{1512}(1021,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{12637632894072579680009057407652478792421501270592479344920746249} a^{17} - \frac{1599482807296844446929146398414402829935878742234027724612180788}{12637632894072579680009057407652478792421501270592479344920746249} a^{16} + \frac{6206336403759903200124951178691489230322286716211076025093866580}{12637632894072579680009057407652478792421501270592479344920746249} a^{15} + \frac{3570772108763475247952364975103591423832687402748279831844371538}{12637632894072579680009057407652478792421501270592479344920746249} a^{14} - \frac{5454471015075769767550366265922412581659492624632668300390513186}{12637632894072579680009057407652478792421501270592479344920746249} a^{13} + \frac{4362512807981056984850977924933887336887607986239421019824056845}{12637632894072579680009057407652478792421501270592479344920746249} a^{12} - \frac{4428615140988867140330195532573122381474424245116728938643341270}{12637632894072579680009057407652478792421501270592479344920746249} a^{11} + \frac{4807475829097379767806185866016072670497973112287398460036587179}{12637632894072579680009057407652478792421501270592479344920746249} a^{10} - \frac{3545052502017073000376229585335736217031103532669520828719089784}{12637632894072579680009057407652478792421501270592479344920746249} a^{9} + \frac{5572661625978483409204062363629736262476987077773184160712818942}{12637632894072579680009057407652478792421501270592479344920746249} a^{8} - \frac{1958226639250458163595092335319625027548931987047888984698755386}{12637632894072579680009057407652478792421501270592479344920746249} a^{7} - \frac{267332029851504817738627307824662927068060321351533858558821272}{12637632894072579680009057407652478792421501270592479344920746249} a^{6} - \frac{3998133452543279354096266511551798065697654352809776159225745974}{12637632894072579680009057407652478792421501270592479344920746249} a^{5} - \frac{5507082098875105425611474866242452636186982977337579861814563193}{12637632894072579680009057407652478792421501270592479344920746249} a^{4} - \frac{2159822366774270426572268491225275146627525925613907996312621301}{12637632894072579680009057407652478792421501270592479344920746249} a^{3} - \frac{2733042539062095635350014762334575585555761001528557646585622791}{12637632894072579680009057407652478792421501270592479344920746249} a^{2} + \frac{1307993558158410520384070149938104517764599719926348077069107817}{12637632894072579680009057407652478792421501270592479344920746249} a + \frac{2974454120486593571578751154338000327055016008868038435787180669}{12637632894072579680009057407652478792421501270592479344920746249}$
Class group and class number
$C_{9}\times C_{185364}$, which has order $1668276$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), \(\Q(\zeta_{9})^+\), 6.0.1152216576.2, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 7 | Data not computed | ||||||