Properties

Label 18.0.53336860738...5376.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{27}\cdot 3^{44}\cdot 7^{9}$
Root discriminant $109.75$
Ramified primes $2, 3, 7$
Class number $1668276$ (GRH)
Class group $[9, 185364]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![66331746447, -1092690, 29249550873, 592092, 6087814200, -54738, 783654186, 1026, 68738148, -2, 4265379, 0, 187740, 0, 5679, 0, 108, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 108*x^16 + 5679*x^14 + 187740*x^12 + 4265379*x^10 - 2*x^9 + 68738148*x^8 + 1026*x^7 + 783654186*x^6 - 54738*x^5 + 6087814200*x^4 + 592092*x^3 + 29249550873*x^2 - 1092690*x + 66331746447)
 
gp: K = bnfinit(x^18 + 108*x^16 + 5679*x^14 + 187740*x^12 + 4265379*x^10 - 2*x^9 + 68738148*x^8 + 1026*x^7 + 783654186*x^6 - 54738*x^5 + 6087814200*x^4 + 592092*x^3 + 29249550873*x^2 - 1092690*x + 66331746447, 1)
 

Normalized defining polynomial

\( x^{18} + 108 x^{16} + 5679 x^{14} + 187740 x^{12} + 4265379 x^{10} - 2 x^{9} + 68738148 x^{8} + 1026 x^{7} + 783654186 x^{6} - 54738 x^{5} + 6087814200 x^{4} + 592092 x^{3} + 29249550873 x^{2} - 1092690 x + 66331746447 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-5333686073828961010482481752887525376=-\,2^{27}\cdot 3^{44}\cdot 7^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $109.75$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1512=2^{3}\cdot 3^{3}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{1512}(1,·)$, $\chi_{1512}(517,·)$, $\chi_{1512}(1345,·)$, $\chi_{1512}(841,·)$, $\chi_{1512}(13,·)$, $\chi_{1512}(1357,·)$, $\chi_{1512}(337,·)$, $\chi_{1512}(853,·)$, $\chi_{1512}(1177,·)$, $\chi_{1512}(349,·)$, $\chi_{1512}(673,·)$, $\chi_{1512}(1189,·)$, $\chi_{1512}(169,·)$, $\chi_{1512}(685,·)$, $\chi_{1512}(1009,·)$, $\chi_{1512}(181,·)$, $\chi_{1512}(505,·)$, $\chi_{1512}(1021,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{12637632894072579680009057407652478792421501270592479344920746249} a^{17} - \frac{1599482807296844446929146398414402829935878742234027724612180788}{12637632894072579680009057407652478792421501270592479344920746249} a^{16} + \frac{6206336403759903200124951178691489230322286716211076025093866580}{12637632894072579680009057407652478792421501270592479344920746249} a^{15} + \frac{3570772108763475247952364975103591423832687402748279831844371538}{12637632894072579680009057407652478792421501270592479344920746249} a^{14} - \frac{5454471015075769767550366265922412581659492624632668300390513186}{12637632894072579680009057407652478792421501270592479344920746249} a^{13} + \frac{4362512807981056984850977924933887336887607986239421019824056845}{12637632894072579680009057407652478792421501270592479344920746249} a^{12} - \frac{4428615140988867140330195532573122381474424245116728938643341270}{12637632894072579680009057407652478792421501270592479344920746249} a^{11} + \frac{4807475829097379767806185866016072670497973112287398460036587179}{12637632894072579680009057407652478792421501270592479344920746249} a^{10} - \frac{3545052502017073000376229585335736217031103532669520828719089784}{12637632894072579680009057407652478792421501270592479344920746249} a^{9} + \frac{5572661625978483409204062363629736262476987077773184160712818942}{12637632894072579680009057407652478792421501270592479344920746249} a^{8} - \frac{1958226639250458163595092335319625027548931987047888984698755386}{12637632894072579680009057407652478792421501270592479344920746249} a^{7} - \frac{267332029851504817738627307824662927068060321351533858558821272}{12637632894072579680009057407652478792421501270592479344920746249} a^{6} - \frac{3998133452543279354096266511551798065697654352809776159225745974}{12637632894072579680009057407652478792421501270592479344920746249} a^{5} - \frac{5507082098875105425611474866242452636186982977337579861814563193}{12637632894072579680009057407652478792421501270592479344920746249} a^{4} - \frac{2159822366774270426572268491225275146627525925613907996312621301}{12637632894072579680009057407652478792421501270592479344920746249} a^{3} - \frac{2733042539062095635350014762334575585555761001528557646585622791}{12637632894072579680009057407652478792421501270592479344920746249} a^{2} + \frac{1307993558158410520384070149938104517764599719926348077069107817}{12637632894072579680009057407652478792421501270592479344920746249} a + \frac{2974454120486593571578751154338000327055016008868038435787180669}{12637632894072579680009057407652478792421501270592479344920746249}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{9}\times C_{185364}$, which has order $1668276$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40934.03294431194 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-14}) \), \(\Q(\zeta_{9})^+\), 6.0.1152216576.2, \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ R $18$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ $18$ $18$ $18$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.9.22.8$x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.8$x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
7Data not computed