Properties

Label 18.0.53199932686...2523.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{9}\cdot 37^{4}\cdot 229^{6}$
Root discriminant $23.64$
Ramified primes $3, 37, 229$
Class number $6$
Class group $[6]$
Galois group $C_2\times C_3\wr S_3$ (as 18T119)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 49, -138, 330, -393, 618, -468, 826, -393, 608, -219, 327, -96, 93, -30, 19, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 4*x^17 + 19*x^16 - 30*x^15 + 93*x^14 - 96*x^13 + 327*x^12 - 219*x^11 + 608*x^10 - 393*x^9 + 826*x^8 - 468*x^7 + 618*x^6 - 393*x^5 + 330*x^4 - 138*x^3 + 49*x^2 - 8*x + 1)
 
gp: K = bnfinit(x^18 - 4*x^17 + 19*x^16 - 30*x^15 + 93*x^14 - 96*x^13 + 327*x^12 - 219*x^11 + 608*x^10 - 393*x^9 + 826*x^8 - 468*x^7 + 618*x^6 - 393*x^5 + 330*x^4 - 138*x^3 + 49*x^2 - 8*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 4 x^{17} + 19 x^{16} - 30 x^{15} + 93 x^{14} - 96 x^{13} + 327 x^{12} - 219 x^{11} + 608 x^{10} - 393 x^{9} + 826 x^{8} - 468 x^{7} + 618 x^{6} - 393 x^{5} + 330 x^{4} - 138 x^{3} + 49 x^{2} - 8 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-5319993268633121382752523=-\,3^{9}\cdot 37^{4}\cdot 229^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 37, 229$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{237507873853561063} a^{17} + \frac{18778136346416529}{237507873853561063} a^{16} + \frac{102465461214169847}{237507873853561063} a^{15} + \frac{29957995639999119}{237507873853561063} a^{14} + \frac{56079891845069186}{237507873853561063} a^{13} + \frac{97656513073038942}{237507873853561063} a^{12} + \frac{110443594955115955}{237507873853561063} a^{11} + \frac{36137537703247373}{237507873853561063} a^{10} + \frac{57277611991355225}{237507873853561063} a^{9} - \frac{103760166574876010}{237507873853561063} a^{8} - \frac{70458707733252915}{237507873853561063} a^{7} + \frac{43490462656660459}{237507873853561063} a^{6} - \frac{52968339527894156}{237507873853561063} a^{5} + \frac{111193816432338531}{237507873853561063} a^{4} - \frac{72591624962490916}{237507873853561063} a^{3} + \frac{72164213775072092}{237507873853561063} a^{2} - \frac{29780175487836087}{237507873853561063} a - \frac{101835249520522307}{237507873853561063}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6}$, which has order $6$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{38340763460767805}{237507873853561063} a^{17} - \frac{148394097666019470}{237507873853561063} a^{16} + \frac{711351652523116222}{237507873853561063} a^{15} - \frac{1067058198511944776}{237507873853561063} a^{14} + \frac{3469775042345795240}{237507873853561063} a^{13} - \frac{3304362782597081610}{237507873853561063} a^{12} + \frac{12318183431505834455}{237507873853561063} a^{11} - \frac{7038703287014700634}{237507873853561063} a^{10} + \frac{23113980230217725948}{237507873853561063} a^{9} - \frac{12646430371866783876}{237507873853561063} a^{8} + \frac{31348867518603374858}{237507873853561063} a^{7} - \frac{14797073407134640580}{237507873853561063} a^{6} + \frac{23551058927405630616}{237507873853561063} a^{5} - \frac{13055873253786622604}{237507873853561063} a^{4} + \frac{12233313946759345246}{237507873853561063} a^{3} - \frac{4246491809675198221}{237507873853561063} a^{2} + \frac{1942249127161256972}{237507873853561063} a - \frac{82871362187861909}{237507873853561063} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22714.2286235 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_3\wr S_3$ (as 18T119):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 324
The 44 conjugacy class representatives for $C_2\times C_3\wr S_3$
Character table for $C_2\times C_3\wr S_3$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.3.229.1, 6.0.1415907.1, 9.9.16440305941.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ R $18$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ $18$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$37$37.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
37.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
37.3.2.2$x^{3} + 74$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
37.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
37.3.2.2$x^{3} + 74$$3$$1$$2$$C_3$$[\ ]_{3}$
229Data not computed