Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} + 6 x^{15} - 12 x^{14} - 28 x^{13} + 63 x^{12} + 17 x^{11} - 17 x^{10} - 126 x^{9} + 130 x^{8} - 112 x^{7} + 216 x^{6} - 144 x^{5} + 200 x^{4} - 112 x^{3} + 112 x^{2} - 32 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-530727912779568801529540608=-\,2^{12}\cdot 3^{9}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{5}{12} a^{6} + \frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{4} a^{6} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{13} - \frac{1}{24} a^{12} - \frac{1}{12} a^{11} - \frac{1}{6} a^{10} + \frac{1}{12} a^{9} + \frac{5}{24} a^{8} + \frac{1}{24} a^{7} - \frac{1}{24} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2}$, $\frac{1}{528} a^{15} + \frac{3}{176} a^{14} - \frac{1}{528} a^{13} - \frac{1}{66} a^{12} - \frac{3}{88} a^{11} + \frac{7}{44} a^{10} + \frac{35}{528} a^{9} - \frac{9}{176} a^{8} + \frac{7}{176} a^{7} - \frac{17}{44} a^{6} - \frac{4}{33} a^{5} + \frac{3}{11} a^{4} + \frac{13}{66} a^{3} + \frac{1}{22} a^{2} + \frac{9}{22} a - \frac{4}{33}$, $\frac{1}{40128} a^{16} - \frac{37}{40128} a^{15} + \frac{23}{13376} a^{14} - \frac{43}{1056} a^{13} - \frac{15}{6688} a^{12} - \frac{553}{10032} a^{11} - \frac{1189}{40128} a^{10} - \frac{3661}{40128} a^{9} - \frac{1383}{13376} a^{8} - \frac{4457}{20064} a^{7} + \frac{1297}{5016} a^{6} + \frac{2741}{10032} a^{5} + \frac{92}{627} a^{4} - \frac{653}{1672} a^{3} + \frac{439}{5016} a^{2} + \frac{13}{2508} a + \frac{137}{418}$, $\frac{1}{2017996992} a^{17} - \frac{257}{45863568} a^{16} - \frac{9929}{21020802} a^{15} - \frac{9900479}{672665664} a^{14} - \frac{2244273}{56055472} a^{13} + \frac{30254617}{1008998496} a^{12} - \frac{14144681}{2017996992} a^{11} + \frac{132197579}{1008998496} a^{10} - \frac{728899}{336332832} a^{9} - \frac{35611199}{224221888} a^{8} + \frac{96953663}{1008998496} a^{7} - \frac{44698865}{504499248} a^{6} + \frac{194719361}{504499248} a^{5} - \frac{1014715}{252249624} a^{4} - \frac{24684427}{63062406} a^{3} + \frac{44865725}{252249624} a^{2} + \frac{18713857}{42041604} a + \frac{16424939}{63062406}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{436853}{106210368} a^{17} + \frac{223783}{53105184} a^{16} + \frac{70715}{17701728} a^{15} - \frac{2309771}{35403456} a^{14} + \frac{5549}{8850864} a^{13} + \frac{11370493}{53105184} a^{12} - \frac{2301059}{106210368} a^{11} - \frac{7858363}{13276296} a^{10} - \frac{789121}{8850864} a^{9} + \frac{8697365}{11801152} a^{8} + \frac{29363429}{53105184} a^{7} - \frac{21637529}{26552592} a^{6} + \frac{178121}{26552592} a^{5} - \frac{8599177}{13276296} a^{4} + \frac{2852065}{6638148} a^{3} - \frac{1799105}{1206936} a^{2} + \frac{209917}{737572} a + \frac{26831}{3319074} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3307615.5705449595 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.5476.1, 3.1.4107.1 x3, 6.0.809637552.2, 6.0.50602347.2, 9.1.4433575234752.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $37$ | 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |