Normalized defining polynomial
\( x^{18} - 2 x^{17} + 10 x^{16} + 10 x^{15} + 7 x^{14} + 97 x^{13} + 127 x^{12} - 201 x^{11} + 915 x^{10} - 653 x^{9} + 656 x^{8} + 76 x^{7} - 34 x^{6} + 161 x^{5} + 28 x^{4} - 8 x^{3} + 27 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-530727912779568801529540608=-\,2^{12}\cdot 3^{9}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{73} a^{15} - \frac{20}{73} a^{14} - \frac{23}{73} a^{13} - \frac{17}{73} a^{12} + \frac{26}{73} a^{11} - \frac{13}{73} a^{10} + \frac{6}{73} a^{9} + \frac{17}{73} a^{8} + \frac{22}{73} a^{7} - \frac{12}{73} a^{6} + \frac{29}{73} a^{5} - \frac{13}{73} a^{4} + \frac{12}{73} a^{3} - \frac{31}{73} a^{2} - \frac{23}{73} a - \frac{7}{73}$, $\frac{1}{26207} a^{16} + \frac{64}{26207} a^{15} + \frac{2750}{26207} a^{14} + \frac{3964}{26207} a^{13} + \frac{7212}{26207} a^{12} + \frac{4361}{26207} a^{11} + \frac{4243}{26207} a^{10} - \frac{4881}{26207} a^{9} + \frac{11451}{26207} a^{8} + \frac{7895}{26207} a^{7} - \frac{2074}{26207} a^{6} + \frac{10526}{26207} a^{5} - \frac{6336}{26207} a^{4} - \frac{9608}{26207} a^{3} - \frac{11898}{26207} a^{2} + \frac{7624}{26207} a - \frac{10224}{26207}$, $\frac{1}{77342493889837} a^{17} + \frac{173902510}{77342493889837} a^{16} + \frac{368441889202}{77342493889837} a^{15} - \frac{23991969407335}{77342493889837} a^{14} + \frac{2196453573100}{7031135808167} a^{13} - \frac{7808024262656}{77342493889837} a^{12} - \frac{3292906144494}{7031135808167} a^{11} - \frac{26660910076408}{77342493889837} a^{10} - \frac{28103565643721}{77342493889837} a^{9} + \frac{9061480485285}{77342493889837} a^{8} - \frac{267222947268}{77342493889837} a^{7} + \frac{10695437565553}{77342493889837} a^{6} + \frac{216841324036}{7031135808167} a^{5} - \frac{1229390572326}{77342493889837} a^{4} - \frac{8896574119120}{77342493889837} a^{3} - \frac{21391925429769}{77342493889837} a^{2} - \frac{9815363835570}{77342493889837} a + \frac{13686466629766}{77342493889837}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{61546276048}{215438701643} a^{17} - \frac{130223656922}{215438701643} a^{16} + \frac{618459364454}{215438701643} a^{15} + \frac{568332425901}{215438701643} a^{14} + \frac{22495432094}{19585336513} a^{13} + \frac{5816916261874}{215438701643} a^{12} + \frac{645308973352}{19585336513} a^{11} - \frac{14308658288860}{215438701643} a^{10} + \frac{773988804288}{2951215091} a^{9} - \frac{43873847916768}{215438701643} a^{8} + \frac{34954800613098}{215438701643} a^{7} + \frac{8065666913716}{215438701643} a^{6} - \frac{716989355282}{19585336513} a^{5} + \frac{8816699348122}{215438701643} a^{4} + \frac{2110444676338}{215438701643} a^{3} - \frac{1284894236004}{215438701643} a^{2} + \frac{1378518139828}{215438701643} a - \frac{33377666261}{215438701643} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 174504.17013875535 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1369.1, 3.1.5476.1, 6.0.50602347.1, 6.0.809637552.2, 9.3.164206490176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |