Normalized defining polynomial
\( x^{18} + 36 x^{16} - 15 x^{15} + 486 x^{14} - 315 x^{13} + 3642 x^{12} - 2025 x^{11} + 16344 x^{10} - 1415 x^{9} + 43740 x^{8} + 17055 x^{7} + 96036 x^{6} + 44955 x^{5} + 143037 x^{4} + 65865 x^{3} + 93636 x^{2} + 52020 x + 39304 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-526677118301850649055916906437559=-\,3^{39}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{3} + \frac{1}{3} a$, $\frac{1}{36} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{5}{12} a^{5} - \frac{1}{3} a^{4} - \frac{1}{12} a^{3} + \frac{5}{36} a^{2} - \frac{5}{18} a + \frac{2}{9}$, $\frac{1}{21420} a^{12} - \frac{5}{612} a^{11} + \frac{421}{10710} a^{10} - \frac{61}{4284} a^{9} + \frac{11}{238} a^{8} + \frac{29}{714} a^{7} + \frac{286}{1785} a^{6} + \frac{115}{476} a^{5} - \frac{1399}{7140} a^{4} - \frac{19}{63} a^{3} + \frac{311}{1260} a^{2} - \frac{5}{306} a + \frac{22}{315}$, $\frac{1}{21420} a^{13} - \frac{11}{7140} a^{11} - \frac{341}{4284} a^{10} - \frac{27}{476} a^{9} - \frac{9}{238} a^{8} - \frac{233}{3570} a^{7} - \frac{25}{476} a^{6} + \frac{248}{595} a^{5} - \frac{1817}{4284} a^{4} - \frac{51}{140} a^{3} + \frac{25}{204} a^{2} - \frac{956}{5355} a$, $\frac{1}{21420} a^{14} + \frac{1}{84} a^{11} + \frac{23}{1260} a^{10} - \frac{271}{4284} a^{9} + \frac{103}{2380} a^{8} + \frac{9}{238} a^{7} + \frac{863}{7140} a^{6} + \frac{565}{4284} a^{5} - \frac{393}{1190} a^{4} + \frac{31}{357} a^{3} + \frac{1567}{3570} a^{2} - \frac{97}{306} a - \frac{149}{315}$, $\frac{1}{599760} a^{15} + \frac{1}{119952} a^{13} + \frac{1}{74970} a^{12} - \frac{6529}{599760} a^{11} + \frac{106}{1785} a^{10} - \frac{11923}{599760} a^{9} + \frac{113}{2499} a^{8} - \frac{1359}{66640} a^{7} + \frac{10499}{149940} a^{6} + \frac{421}{28560} a^{5} + \frac{85997}{299880} a^{4} + \frac{48757}{599760} a^{3} + \frac{66919}{149940} a^{2} - \frac{16951}{49980} a - \frac{1457}{4410}$, $\frac{1}{1799280} a^{16} - \frac{1}{1799280} a^{15} + \frac{11}{599760} a^{14} + \frac{31}{1799280} a^{13} - \frac{13}{1799280} a^{12} + \frac{7627}{599760} a^{11} + \frac{77677}{1799280} a^{10} + \frac{43103}{1799280} a^{9} - \frac{163}{2352} a^{8} - \frac{34057}{1799280} a^{7} - \frac{28555}{359856} a^{6} - \frac{260681}{599760} a^{5} - \frac{567877}{1799280} a^{4} - \frac{151813}{359856} a^{3} + \frac{37913}{149940} a^{2} - \frac{35743}{449820} a + \frac{311}{2646}$, $\frac{1}{406831003079760} a^{17} - \frac{342611}{1994269622940} a^{16} - \frac{10603909}{14529678681420} a^{15} - \frac{272265359}{14529678681420} a^{14} + \frac{254926417}{22601722393320} a^{13} + \frac{258137087}{25426937692485} a^{12} - \frac{527292691349}{40683100307976} a^{11} - \frac{846117531433}{11300861196660} a^{10} - \frac{237155209988}{5085387538497} a^{9} + \frac{1581723383143}{20341550153988} a^{8} - \frac{1972910137391}{33902583589980} a^{7} - \frac{3164900280821}{40683100307976} a^{6} + \frac{2563608004009}{20341550153988} a^{5} - \frac{4186563627859}{22601722393320} a^{4} - \frac{27061556607341}{406831003079760} a^{3} - \frac{3909890286373}{14529678681420} a^{2} - \frac{217474969363}{664756540980} a - \frac{10833991415}{35192993346}$
Class group and class number
$C_{2}\times C_{14}\times C_{56}$, which has order $1568$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2657736.68779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), 3.1.8991.3 x3, \(\Q(\zeta_{9})^+\), 6.0.8973026991.3, 6.0.8973026991.5 x2, 6.0.997002999.1, 9.3.58872030087951.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |