Normalized defining polynomial
\( x^{18} - 12 x^{16} - 8 x^{15} + 117 x^{14} + 96 x^{13} + 246 x^{12} + 438 x^{11} + 2376 x^{10} + 3532 x^{9} + 21948 x^{8} + 13782 x^{7} + 114732 x^{6} + 44268 x^{5} + 331017 x^{4} + 87920 x^{3} + 531078 x^{2} + 90444 x + 386513 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-524682375772545974113841184768=-\,2^{27}\cdot 3^{24}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(504=2^{3}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{504}(1,·)$, $\chi_{504}(67,·)$, $\chi_{504}(193,·)$, $\chi_{504}(457,·)$, $\chi_{504}(331,·)$, $\chi_{504}(403,·)$, $\chi_{504}(337,·)$, $\chi_{504}(211,·)$, $\chi_{504}(235,·)$, $\chi_{504}(25,·)$, $\chi_{504}(289,·)$, $\chi_{504}(163,·)$, $\chi_{504}(169,·)$, $\chi_{504}(43,·)$, $\chi_{504}(499,·)$, $\chi_{504}(361,·)$, $\chi_{504}(121,·)$, $\chi_{504}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{7} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{8} + \frac{1}{4} a$, $\frac{1}{2032} a^{16} - \frac{69}{1016} a^{15} + \frac{45}{2032} a^{14} + \frac{209}{508} a^{13} - \frac{201}{1016} a^{12} - \frac{59}{254} a^{11} + \frac{235}{508} a^{10} - \frac{261}{1016} a^{9} + \frac{67}{254} a^{8} - \frac{99}{1016} a^{7} - \frac{17}{127} a^{6} + \frac{93}{254} a^{5} - \frac{253}{508} a^{4} - \frac{213}{508} a^{3} - \frac{227}{2032} a^{2} - \frac{235}{1016} a + \frac{739}{2032}$, $\frac{1}{3021945331191994060617427135288301909728208} a^{17} - \frac{215562849930157677497354095706655280979}{1510972665595997030308713567644150954864104} a^{16} + \frac{232371366537956378947417931779380902864237}{3021945331191994060617427135288301909728208} a^{15} - \frac{62460563221523657203856468932030151860437}{755486332797998515154356783822075477432052} a^{14} + \frac{197371894531375346347517753585665886470999}{1510972665595997030308713567644150954864104} a^{13} + \frac{151044555135211603993672320060460770080033}{377743166398999257577178391911037738716026} a^{12} + \frac{335766744836429055038773446952199321916735}{755486332797998515154356783822075477432052} a^{11} - \frac{694659697557326419687915812515768004292093}{1510972665595997030308713567644150954864104} a^{10} + \frac{20720391532434307082760727341924220249256}{188871583199499628788589195955518869358013} a^{9} - \frac{311458809774434245773698200231429029061315}{1510972665595997030308713567644150954864104} a^{8} - \frac{25082947150873066725027793304809915023682}{188871583199499628788589195955518869358013} a^{7} + \frac{110203117922342760168360637535597513563585}{377743166398999257577178391911037738716026} a^{6} - \frac{320442781717083557528142111908869199965269}{755486332797998515154356783822075477432052} a^{5} + \frac{87195312287742891396987369404115250390971}{755486332797998515154356783822075477432052} a^{4} - \frac{185753948336770130809072931324844395214739}{3021945331191994060617427135288301909728208} a^{3} - \frac{503591646587135715205117352184710139592161}{1510972665595997030308713567644150954864104} a^{2} + \frac{983324736378191248398997025994625077839619}{3021945331191994060617427135288301909728208} a - \frac{61660109585797079429381656388328797889176}{188871583199499628788589195955518869358013}$
Class group and class number
$C_{18}\times C_{18}$, which has order $324$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.3359232.1, 6.0.8065516032.2, 6.0.1229312.1, 6.0.8065516032.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||