Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} - 23 x^{15} + 36 x^{14} - 69 x^{13} + 124 x^{12} - 87 x^{11} + 237 x^{10} - 80 x^{9} + 306 x^{8} - 24 x^{7} + 173 x^{6} + 75 x^{5} + 51 x^{4} + 33 x^{3} + 27 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5232754168105857064083=-\,3^{21}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{669767780359385} a^{17} - \frac{34365238998009}{669767780359385} a^{16} - \frac{12000490149727}{133953556071877} a^{15} + \frac{61048673316056}{669767780359385} a^{14} - \frac{27691495723931}{669767780359385} a^{13} - \frac{267542551361926}{669767780359385} a^{12} - \frac{241297089902973}{669767780359385} a^{11} + \frac{35004515477188}{133953556071877} a^{10} - \frac{110622119492177}{669767780359385} a^{9} + \frac{40455428899579}{669767780359385} a^{8} + \frac{287732754828014}{669767780359385} a^{7} + \frac{243793051117334}{669767780359385} a^{6} - \frac{201500969284958}{669767780359385} a^{5} + \frac{26602579606302}{669767780359385} a^{4} + \frac{114349315073602}{669767780359385} a^{3} - \frac{76997033965542}{669767780359385} a^{2} + \frac{318332744682877}{669767780359385} a + \frac{15514862151941}{133953556071877}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{627500896}{2754806255} a^{17} - \frac{1958616954}{2754806255} a^{16} + \frac{3790002632}{2754806255} a^{15} - \frac{2873051255}{550961251} a^{14} + \frac{23526265189}{2754806255} a^{13} - \frac{42169200547}{2754806255} a^{12} + \frac{78121277788}{2754806255} a^{11} - \frac{55644540884}{2754806255} a^{10} + \frac{138125229427}{2754806255} a^{9} - \frac{65827906823}{2754806255} a^{8} + \frac{167100714664}{2754806255} a^{7} - \frac{38369759581}{2754806255} a^{6} + \frac{79274892033}{2754806255} a^{5} + \frac{25292171228}{2754806255} a^{4} + \frac{21812017883}{2754806255} a^{3} + \frac{6851786753}{2754806255} a^{2} + \frac{12788449774}{2754806255} a + \frac{2037111233}{2754806255} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10792.8653088 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $D_{18}$ |
| Character table for $D_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.87.1, 6.0.22707.1, 9.1.41764235769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.5 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.14.11 | $x^{12} + 6 x^{11} + 21 x^{10} + 36 x^{9} + 30 x^{8} + 36 x^{7} + 3 x^{6} + 36 x^{5} + 27 x^{4} - 9 x^{2} + 36$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |