Normalized defining polynomial
\( x^{18} - 8 x^{17} - 517 x^{16} + 1678 x^{15} + 96179 x^{14} + 34920 x^{13} - 5376324 x^{12} + 5188354 x^{11} + 148150274 x^{10} - 258684356 x^{9} - 628744217 x^{8} - 3685397192 x^{7} + 30254061027 x^{6} - 6887580648 x^{5} + 43144941139 x^{4} - 488373903890 x^{3} + 1226187715060 x^{2} + 1982246556352 x + 9154324841549 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5217281166509238670480233915527947833639206912000000000=-\,2^{24}\cdot 5^{9}\cdot 877^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1096.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 877$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{174} a^{14} + \frac{1}{29} a^{13} - \frac{3}{58} a^{12} + \frac{9}{58} a^{11} + \frac{5}{87} a^{10} - \frac{5}{29} a^{9} - \frac{19}{87} a^{8} - \frac{27}{58} a^{7} + \frac{5}{174} a^{6} - \frac{5}{58} a^{5} + \frac{40}{87} a^{4} - \frac{25}{58} a^{3} - \frac{1}{2} a^{2} + \frac{5}{29} a + \frac{1}{87}$, $\frac{1}{440742} a^{15} - \frac{229}{440742} a^{14} - \frac{11918}{220371} a^{13} + \frac{6949}{146914} a^{12} + \frac{34235}{146914} a^{11} + \frac{34567}{220371} a^{10} + \frac{16553}{440742} a^{9} + \frac{105301}{220371} a^{8} - \frac{32327}{220371} a^{7} + \frac{2450}{220371} a^{6} - \frac{21863}{146914} a^{5} + \frac{105013}{440742} a^{4} + \frac{39538}{220371} a^{3} + \frac{65521}{146914} a^{2} - \frac{123599}{440742} a - \frac{112613}{440742}$, $\frac{1}{96424909224134982} a^{16} - \frac{80889517669}{96424909224134982} a^{15} + \frac{50531810349}{16070818204022497} a^{14} + \frac{922295423153966}{16070818204022497} a^{13} + \frac{939095979304694}{48212454612067491} a^{12} - \frac{820379175552599}{48212454612067491} a^{11} - \frac{5447020476660220}{48212454612067491} a^{10} + \frac{7761321099920789}{96424909224134982} a^{9} - \frac{23932528102157407}{96424909224134982} a^{8} + \frac{46551769906444105}{96424909224134982} a^{7} - \frac{38184039151898545}{96424909224134982} a^{6} - \frac{19752798732460954}{48212454612067491} a^{5} + \frac{4783747694371504}{16070818204022497} a^{4} + \frac{14579447544577061}{32141636408044994} a^{3} - \frac{1873666190540000}{48212454612067491} a^{2} - \frac{22892944387677245}{96424909224134982} a - \frac{217731905813}{16070818204022497}$, $\frac{1}{64070425775160038783733570567724171225331734651523164706129621457096321189256662} a^{17} - \frac{90086745563063495240974612387013062690109326382749917355054749}{21356808591720012927911190189241390408443911550507721568709873819032107063085554} a^{16} - \frac{14607851986233027491263730621641908622135045074029107564022508042230149883}{32035212887580019391866785283862085612665867325761582353064810728548160594628331} a^{15} - \frac{10728876812810666456790409246349872090331328142191517408858724031073618664877}{21356808591720012927911190189241390408443911550507721568709873819032107063085554} a^{14} + \frac{3272493076657453965684516104804371687830738659913823910377200680842353533616019}{64070425775160038783733570567724171225331734651523164706129621457096321189256662} a^{13} + \frac{1206558313820739132680800034813265734404030013907959932475018715983102901246791}{64070425775160038783733570567724171225331734651523164706129621457096321189256662} a^{12} + \frac{2211688395292753174208597615088152738400996492335639336006232271327893210057739}{21356808591720012927911190189241390408443911550507721568709873819032107063085554} a^{11} + \frac{12630133064729875278879111965488177545612833071037813274154457372156848369497287}{64070425775160038783733570567724171225331734651523164706129621457096321189256662} a^{10} + \frac{7345243690255554927688123848988804815168792194104604256015867212599486364207696}{32035212887580019391866785283862085612665867325761582353064810728548160594628331} a^{9} + \frac{10642551841176644458541999908831299389091265605254789980871501280988676542510927}{64070425775160038783733570567724171225331734651523164706129621457096321189256662} a^{8} - \frac{102840405629175911042775805954074614938388184870454099137695664118143472299293}{628141429168235674350329123212982070836585633838462399079702171148003148914281} a^{7} - \frac{9361618930524224087982011366638061607666131776002655599666669606625459665846033}{21356808591720012927911190189241390408443911550507721568709873819032107063085554} a^{6} - \frac{26235328625543703621105376628956738418697210726872164693851309646087970302171085}{64070425775160038783733570567724171225331734651523164706129621457096321189256662} a^{5} + \frac{26296261092875914327556811862202282166340144025932591642237002343015967478653539}{64070425775160038783733570567724171225331734651523164706129621457096321189256662} a^{4} + \frac{73506047657094560039849866229959464302171402691414907649171565896912838351569}{64070425775160038783733570567724171225331734651523164706129621457096321189256662} a^{3} - \frac{89119458633967897186662608605748810526674904925661326426345260558238158687197}{32035212887580019391866785283862085612665867325761582353064810728548160594628331} a^{2} + \frac{24096210380606928402272533600896177207337047832267793310072412097657497832891065}{64070425775160038783733570567724171225331734651523164706129621457096321189256662} a - \frac{11298618085976876849144608244228289822073336000895633674664262161695403363938988}{32035212887580019391866785283862085612665867325761582353064810728548160594628331}$
Class group and class number
$C_{2}\times C_{2}\times C_{54}\times C_{61400052}$, which has order $13262411232$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11318340440.066559 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 3.3.3508.1, 3.3.769129.1, 6.0.24612128000.1, 6.0.4732475349128000.1, 9.9.25537426374121078096192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 877 | Data not computed | ||||||