Normalized defining polynomial
\( x^{18} - 9 x^{17} + 33 x^{16} - 27 x^{15} - 189 x^{14} + 717 x^{13} - 1142 x^{12} + 597 x^{11} + 1758 x^{10} - 7263 x^{9} + 16119 x^{8} - 23991 x^{7} + 28780 x^{6} - 25590 x^{5} + 9324 x^{4} - 4725 x^{3} + 8820 x^{2} + 17199 x + 9261 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5211118580339502644200128000000=-\,2^{12}\cdot 3^{9}\cdot 5^{6}\cdot 7^{6}\cdot 181^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{21} a^{9} + \frac{1}{21} a^{8} + \frac{2}{21} a^{7} - \frac{1}{21} a^{6} - \frac{10}{21} a^{5} + \frac{5}{21} a^{4} + \frac{1}{3} a^{3} - \frac{5}{21} a^{2}$, $\frac{1}{21} a^{10} + \frac{1}{21} a^{8} - \frac{1}{7} a^{7} - \frac{2}{21} a^{6} - \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{21} a^{11} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{2}{21} a^{6} + \frac{5}{21} a^{5} - \frac{10}{21} a^{4} - \frac{3}{7} a^{3} + \frac{5}{21} a^{2}$, $\frac{1}{63} a^{12} - \frac{1}{63} a^{10} + \frac{2}{21} a^{8} + \frac{2}{21} a^{7} - \frac{4}{63} a^{6} - \frac{10}{21} a^{5} + \frac{16}{63} a^{4} + \frac{8}{21} a^{3} - \frac{2}{7} a^{2}$, $\frac{1}{63} a^{13} - \frac{1}{63} a^{11} + \frac{5}{63} a^{7} - \frac{1}{21} a^{6} - \frac{29}{63} a^{5} + \frac{5}{21} a^{4} + \frac{8}{21} a^{3} - \frac{4}{21} a^{2}$, $\frac{1}{315} a^{14} + \frac{1}{315} a^{13} + \frac{1}{315} a^{12} - \frac{4}{315} a^{11} - \frac{2}{315} a^{10} - \frac{2}{105} a^{9} - \frac{19}{315} a^{8} - \frac{1}{45} a^{7} + \frac{23}{315} a^{6} + \frac{97}{315} a^{5} - \frac{118}{315} a^{4} - \frac{2}{35} a^{3} - \frac{4}{105} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{315} a^{15} + \frac{2}{315} a^{11} + \frac{2}{105} a^{10} + \frac{2}{315} a^{9} - \frac{11}{105} a^{8} + \frac{1}{7} a^{7} + \frac{1}{35} a^{6} + \frac{5}{63} a^{5} + \frac{5}{21} a^{4} + \frac{17}{105} a^{3} + \frac{2}{105} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{2205} a^{16} + \frac{2}{2205} a^{15} - \frac{1}{2205} a^{14} + \frac{4}{2205} a^{13} + \frac{16}{2205} a^{12} + \frac{13}{735} a^{11} + \frac{1}{2205} a^{10} - \frac{8}{2205} a^{9} + \frac{193}{2205} a^{8} + \frac{341}{2205} a^{7} + \frac{40}{441} a^{6} + \frac{1}{35} a^{5} + \frac{619}{2205} a^{4} + \frac{12}{35} a^{3} + \frac{11}{105} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{6286531916987390460735} a^{17} + \frac{530755030440389036}{6286531916987390460735} a^{16} - \frac{6460239112568641471}{6286531916987390460735} a^{15} + \frac{1242110867906840377}{1257306383397478092147} a^{14} - \frac{37728037121879172353}{6286531916987390460735} a^{13} - \frac{684578681808571159}{2095510638995796820245} a^{12} - \frac{126219752075488712444}{6286531916987390460735} a^{11} + \frac{135131246308892473}{13347201522266221785} a^{10} - \frac{4614341862453198388}{1257306383397478092147} a^{9} + \frac{189659600355681489367}{6286531916987390460735} a^{8} - \frac{171220562026823930281}{6286531916987390460735} a^{7} + \frac{9939826237830185817}{99786220904561753345} a^{6} + \frac{1872967412082972565426}{6286531916987390460735} a^{5} - \frac{327002774540462847104}{898075988141055780105} a^{4} - \frac{29985860486858307721}{99786220904561753345} a^{3} + \frac{27306775188274640309}{59871732542737052007} a^{2} + \frac{2624076115425993487}{14255174414937393335} a - \frac{3366197543054570484}{14255174414937393335}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6441944}{836771511429} a^{17} - \frac{76578442}{597693936735} a^{16} + \frac{1086255938}{1394619185715} a^{15} - \frac{9224244817}{4183857557145} a^{14} + \frac{948840241}{1394619185715} a^{13} + \frac{1776170164}{119538787347} a^{12} - \frac{30675492329}{597693936735} a^{11} + \frac{72209529734}{836771511429} a^{10} - \frac{25731915022}{464873061905} a^{9} - \frac{565023254654}{4183857557145} a^{8} + \frac{830379202316}{1394619185715} a^{7} - \frac{1075822199002}{836771511429} a^{6} + \frac{8023366991071}{4183857557145} a^{5} - \frac{3161566698781}{1394619185715} a^{4} + \frac{384875280871}{199231312245} a^{3} - \frac{12969009892}{13282087483} a^{2} + \frac{2069078899}{9487205345} a + \frac{5709138424}{9487205345} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1263791154.7914963 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.140.1, 6.0.884547.1, 6.0.529200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 181.6.4.1 | $x^{6} + 9593 x^{3} + 191062152$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |