Properties

Label 18.0.52098686335...3152.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{12}\cdot 3^{37}\cdot 7^{10}$
Root discriminant $44.76$
Ramified primes $2, 3, 7$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_3\times S_3^2$ (as 18T46)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![21952, 0, 0, -18816, 0, 0, 7392, 0, 0, -848, 0, 0, 87, 0, 0, -12, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 12*x^15 + 87*x^12 - 848*x^9 + 7392*x^6 - 18816*x^3 + 21952)
 
gp: K = bnfinit(x^18 - 12*x^15 + 87*x^12 - 848*x^9 + 7392*x^6 - 18816*x^3 + 21952, 1)
 

Normalized defining polynomial

\( x^{18} - 12 x^{15} + 87 x^{12} - 848 x^{9} + 7392 x^{6} - 18816 x^{3} + 21952 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-520986863358984384396363313152=-\,2^{12}\cdot 3^{37}\cdot 7^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{3} + \frac{1}{3}$, $\frac{1}{12} a^{10} + \frac{1}{4} a^{4} - \frac{1}{3} a$, $\frac{1}{36} a^{11} + \frac{1}{36} a^{10} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{12} a^{5} - \frac{5}{12} a^{4} + \frac{1}{3} a^{3} - \frac{5}{18} a^{2} + \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{1008} a^{12} - \frac{5}{126} a^{9} - \frac{9}{112} a^{6} - \frac{37}{252} a^{3} - \frac{1}{18}$, $\frac{1}{2016} a^{13} - \frac{5}{252} a^{10} - \frac{9}{224} a^{7} + \frac{215}{504} a^{4} - \frac{1}{36} a$, $\frac{1}{2016} a^{14} + \frac{1}{126} a^{11} + \frac{1}{36} a^{10} - \frac{1}{18} a^{9} - \frac{139}{672} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{5}{504} a^{5} - \frac{5}{12} a^{4} + \frac{1}{3} a^{3} + \frac{7}{36} a^{2} + \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{12672576} a^{15} + \frac{55}{132006} a^{12} - \frac{747457}{12672576} a^{9} - \frac{248887}{3168144} a^{6} + \frac{10565}{75432} a^{3} + \frac{1015}{4041}$, $\frac{1}{12672576} a^{16} - \frac{503}{6336288} a^{13} - \frac{55113}{1408064} a^{10} - \frac{243191}{6336288} a^{7} - \frac{8105}{28287} a^{4} + \frac{501}{1796} a$, $\frac{1}{177416064} a^{17} - \frac{2483}{22177008} a^{14} - \frac{1149761}{177416064} a^{11} + \frac{1}{36} a^{10} - \frac{1}{18} a^{9} - \frac{5547985}{44354016} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{45247}{452592} a^{5} - \frac{5}{12} a^{4} + \frac{1}{3} a^{3} + \frac{7018}{28287} a^{2} + \frac{2}{9} a - \frac{4}{9}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{37}{258624} a^{15} + \frac{101}{64656} a^{12} - \frac{2491}{258624} a^{9} + \frac{3731}{32328} a^{6} - \frac{30919}{32328} a^{3} + \frac{15329}{8082} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 174512587.28025168 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3^2$ (as 18T46):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 108
The 27 conjugacy class representatives for $C_3\times S_3^2$
Character table for $C_3\times S_3^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.756.1, 6.0.8680203.5, 6.0.1714608.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
3Data not computed
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.3.1$x^{6} - 14 x^{4} + 49 x^{2} - 1372$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$