\\ Pari/GP code for working with number field 18.0.51956851764606118870683564963.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^18 - 3*y^17 + 19*y^16 - 46*y^15 + 209*y^14 - 457*y^13 + 1289*y^12 - 2046*y^11 + 4263*y^10 - 5541*y^9 + 9392*y^8 - 9256*y^7 + 11934*y^6 - 8321*y^5 + 9457*y^4 - 4564*y^3 + 3678*y^2 + 60*y + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 3*x^17 + 19*x^16 - 46*x^15 + 209*x^14 - 457*x^13 + 1289*x^12 - 2046*x^11 + 4263*x^10 - 5541*x^9 + 9392*x^8 - 9256*x^7 + 11934*x^6 - 8321*x^5 + 9457*x^4 - 4564*x^3 + 3678*x^2 + 60*x + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])