Normalized defining polynomial
\( x^{18} - 3 x^{17} + 19 x^{16} - 46 x^{15} + 209 x^{14} - 457 x^{13} + 1289 x^{12} - 2046 x^{11} + 4263 x^{10} - 5541 x^{9} + 9392 x^{8} - 9256 x^{7} + 11934 x^{6} - 8321 x^{5} + 9457 x^{4} - 4564 x^{3} + 3678 x^{2} + 60 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-51956851764606118870683564963=-\,3^{9}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19} a^{15} - \frac{4}{19} a^{14} + \frac{1}{19} a^{13} + \frac{2}{19} a^{12} - \frac{1}{19} a^{11} - \frac{7}{19} a^{10} + \frac{5}{19} a^{9} + \frac{4}{19} a^{8} - \frac{5}{19} a^{7} - \frac{5}{19} a^{6} + \frac{3}{19} a^{5} - \frac{5}{19} a^{4} + \frac{3}{19} a^{3} - \frac{9}{19} a^{2} + \frac{1}{19}$, $\frac{1}{19} a^{16} + \frac{4}{19} a^{14} + \frac{6}{19} a^{13} + \frac{7}{19} a^{12} + \frac{8}{19} a^{11} - \frac{4}{19} a^{10} + \frac{5}{19} a^{9} - \frac{8}{19} a^{8} - \frac{6}{19} a^{7} + \frac{2}{19} a^{6} + \frac{7}{19} a^{5} + \frac{2}{19} a^{4} + \frac{3}{19} a^{3} + \frac{2}{19} a^{2} + \frac{1}{19} a + \frac{4}{19}$, $\frac{1}{1780344773928222178369891} a^{17} + \frac{4969940851627676409236}{1780344773928222178369891} a^{16} + \frac{729900469801086641213}{61391199100973178564479} a^{15} - \frac{534260070876636498669762}{1780344773928222178369891} a^{14} - \frac{697248843309388310159185}{1780344773928222178369891} a^{13} + \frac{154251296482725023996580}{1780344773928222178369891} a^{12} - \frac{130433909560618703932708}{1780344773928222178369891} a^{11} - \frac{399079801231151187378432}{1780344773928222178369891} a^{10} + \frac{14394465569102650703129}{1780344773928222178369891} a^{9} - \frac{367998019632250108301181}{1780344773928222178369891} a^{8} - \frac{34115077627552824437861}{93702356522538009387889} a^{7} + \frac{511361464584614771527982}{1780344773928222178369891} a^{6} - \frac{416332898405329642739923}{1780344773928222178369891} a^{5} + \frac{303603024426334874727568}{1780344773928222178369891} a^{4} - \frac{26773299653594153180341}{93702356522538009387889} a^{3} + \frac{478270407392797804205701}{1780344773928222178369891} a^{2} - \frac{870696502220519743050815}{1780344773928222178369891} a + \frac{131112507893766808919788}{1780344773928222178369891}$
Class group and class number
$C_{2}\times C_{38}$, which has order $76$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{29333510837476704074339}{1780344773928222178369891} a^{17} + \frac{88213177518867648875147}{1780344773928222178369891} a^{16} - \frac{19222870878466126699084}{61391199100973178564479} a^{15} + \frac{1351885121027244340292883}{1780344773928222178369891} a^{14} - \frac{6131174220851336992783571}{1780344773928222178369891} a^{13} + \frac{13428241015122774316752373}{1780344773928222178369891} a^{12} - \frac{37809088739123548025245491}{1780344773928222178369891} a^{11} + \frac{60082497022956651666520939}{1780344773928222178369891} a^{10} - \frac{124909412125943900374206092}{1780344773928222178369891} a^{9} + \frac{162620973139084496762883691}{1780344773928222178369891} a^{8} - \frac{14474050186287256946169357}{93702356522538009387889} a^{7} + \frac{271601669308298606333765854}{1780344773928222178369891} a^{6} - \frac{348723085871212613963280841}{1780344773928222178369891} a^{5} + \frac{244123161069096676601877974}{1780344773928222178369891} a^{4} - \frac{14530595680273679248173192}{93702356522538009387889} a^{3} + \frac{135441400744220539858470835}{1780344773928222178369891} a^{2} - \frac{106849345692613212166805757}{1780344773928222178369891} a + \frac{37294591531552648308581}{1780344773928222178369891} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 290542.983381 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $D_{18}$ |
| Character table for $D_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1129.1, 6.0.34415307.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 1129 | Data not computed | ||||||