Properties

Label 18.0.51952701972...7303.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,19^{16}\cdot 23^{9}$
Root discriminant $65.70$
Ramified primes $19, 23$
Class number $13149$ (GRH)
Class group $[13149]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![83092129, -44882086, 74452082, -36161351, 32437184, -13996282, 8904619, -3386581, 1686287, -559943, 227650, -64937, 21866, -5199, 1435, -266, 58, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 7*x^17 + 58*x^16 - 266*x^15 + 1435*x^14 - 5199*x^13 + 21866*x^12 - 64937*x^11 + 227650*x^10 - 559943*x^9 + 1686287*x^8 - 3386581*x^7 + 8904619*x^6 - 13996282*x^5 + 32437184*x^4 - 36161351*x^3 + 74452082*x^2 - 44882086*x + 83092129)
 
gp: K = bnfinit(x^18 - 7*x^17 + 58*x^16 - 266*x^15 + 1435*x^14 - 5199*x^13 + 21866*x^12 - 64937*x^11 + 227650*x^10 - 559943*x^9 + 1686287*x^8 - 3386581*x^7 + 8904619*x^6 - 13996282*x^5 + 32437184*x^4 - 36161351*x^3 + 74452082*x^2 - 44882086*x + 83092129, 1)
 

Normalized defining polynomial

\( x^{18} - 7 x^{17} + 58 x^{16} - 266 x^{15} + 1435 x^{14} - 5199 x^{13} + 21866 x^{12} - 64937 x^{11} + 227650 x^{10} - 559943 x^{9} + 1686287 x^{8} - 3386581 x^{7} + 8904619 x^{6} - 13996282 x^{5} + 32437184 x^{4} - 36161351 x^{3} + 74452082 x^{2} - 44882086 x + 83092129 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-519527019723470744090368949777303=-\,19^{16}\cdot 23^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $65.70$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(437=19\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{437}(1,·)$, $\chi_{437}(68,·)$, $\chi_{437}(321,·)$, $\chi_{437}(137,·)$, $\chi_{437}(139,·)$, $\chi_{437}(206,·)$, $\chi_{437}(275,·)$, $\chi_{437}(277,·)$, $\chi_{437}(24,·)$, $\chi_{437}(346,·)$, $\chi_{437}(47,·)$, $\chi_{437}(93,·)$, $\chi_{437}(415,·)$, $\chi_{437}(229,·)$, $\chi_{437}(45,·)$, $\chi_{437}(367,·)$, $\chi_{437}(252,·)$, $\chi_{437}(254,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3025743360303391197691220861266214157467082796519307} a^{17} - \frac{937858130649084129601115226447188760413049046379353}{3025743360303391197691220861266214157467082796519307} a^{16} + \frac{1144033288541598726482007602613613078961575227879445}{3025743360303391197691220861266214157467082796519307} a^{15} + \frac{139691210679902972610754876382721390026695310249609}{3025743360303391197691220861266214157467082796519307} a^{14} - \frac{187556376987564632536237889402408304846916809830541}{3025743360303391197691220861266214157467082796519307} a^{13} - \frac{532970375455828326759143811717220658466351968322803}{3025743360303391197691220861266214157467082796519307} a^{12} - \frac{1385272115629972317201980735062799153618245447236812}{3025743360303391197691220861266214157467082796519307} a^{11} + \frac{1389112396085474014255533810533918689564986695862642}{3025743360303391197691220861266214157467082796519307} a^{10} + \frac{1097170949063078611207764493885843265490751859410991}{3025743360303391197691220861266214157467082796519307} a^{9} - \frac{277905326609999143831612630937982729238309628528510}{3025743360303391197691220861266214157467082796519307} a^{8} - \frac{1363662781215295106538982862464016143900586109187588}{3025743360303391197691220861266214157467082796519307} a^{7} - \frac{1353282542506337593588665782486524561157006352432100}{3025743360303391197691220861266214157467082796519307} a^{6} - \frac{787505792596128634336560674855900812673528544006595}{3025743360303391197691220861266214157467082796519307} a^{5} - \frac{727182847883182461234768993517820341298577694354528}{3025743360303391197691220861266214157467082796519307} a^{4} - \frac{256881053783768706843480827206857290114463440470043}{3025743360303391197691220861266214157467082796519307} a^{3} + \frac{763291018007543709837580156025408780401223355743137}{3025743360303391197691220861266214157467082796519307} a^{2} + \frac{978372938840210286380652928490540793174910588282737}{3025743360303391197691220861266214157467082796519307} a - \frac{1369821399556250261421867749182491659366227638789236}{3025743360303391197691220861266214157467082796519307}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{13149}$, which has order $13149$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22305.8950792 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-23}) \), 3.3.361.1, 6.0.1585615607.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ $18$ R R ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
23Data not computed