Normalized defining polynomial
\( x^{18} - 3 x^{16} - 36 x^{15} + 171 x^{14} - 312 x^{13} + 616 x^{12} - 2430 x^{11} + 7284 x^{10} - 19902 x^{9} + 51336 x^{8} - 111702 x^{7} + 202515 x^{6} - 314298 x^{5} + 421431 x^{4} - 437878 x^{3} + 392661 x^{2} - 281418 x + 110764 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-519235183203048555634413069867=-\,3^{24}\cdot 107^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{5} - \frac{3}{8} a^{3} + \frac{3}{16} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{16} a^{6} + \frac{1}{8} a^{4} + \frac{3}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{7} + \frac{3}{16} a^{4} + \frac{1}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{6016} a^{14} - \frac{21}{3008} a^{13} - \frac{1}{47} a^{12} + \frac{79}{3008} a^{11} + \frac{11}{94} a^{10} - \frac{43}{752} a^{9} + \frac{39}{376} a^{8} - \frac{19}{376} a^{7} + \frac{295}{1504} a^{6} + \frac{629}{3008} a^{5} - \frac{49}{376} a^{4} + \frac{143}{752} a^{3} - \frac{1481}{6016} a^{2} + \frac{1389}{3008} a + \frac{125}{1504}$, $\frac{1}{42112} a^{15} + \frac{1}{42112} a^{14} - \frac{403}{21056} a^{13} + \frac{21}{3008} a^{12} - \frac{387}{21056} a^{11} + \frac{101}{1316} a^{10} + \frac{43}{658} a^{9} - \frac{269}{2632} a^{8} + \frac{505}{10528} a^{7} + \frac{1371}{21056} a^{6} + \frac{711}{21056} a^{5} - \frac{39}{376} a^{4} - \frac{9817}{42112} a^{3} + \frac{1}{6016} a^{2} + \frac{511}{3008} a + \frac{2367}{10528}$, $\frac{1}{360478720} a^{16} + \frac{2599}{360478720} a^{15} - \frac{127}{10299392} a^{14} + \frac{960713}{90119680} a^{13} + \frac{3814067}{180239360} a^{12} + \frac{1427619}{180239360} a^{11} + \frac{2362391}{22529920} a^{10} - \frac{149531}{4505984} a^{9} - \frac{8710811}{90119680} a^{8} - \frac{42386609}{180239360} a^{7} + \frac{40545823}{180239360} a^{6} + \frac{1240873}{180239360} a^{5} + \frac{59442471}{360478720} a^{4} - \frac{139459407}{360478720} a^{3} + \frac{101413}{219136} a^{2} + \frac{31944859}{180239360} a + \frac{17787617}{90119680}$, $\frac{1}{24714424546463054735360} a^{17} - \frac{172273463753}{386162883538485230240} a^{16} - \frac{2198106428478081}{262919410068755901440} a^{15} + \frac{1327270769616910127}{24714424546463054735360} a^{14} + \frac{156476072731399523701}{12357212273231527367680} a^{13} + \frac{182628163964114113591}{6178606136615763683840} a^{12} + \frac{40571814788991685317}{1765316039033075338240} a^{11} - \frac{2152699430479522091}{96540720884621307560} a^{10} - \frac{3210591883153082373}{57743982585194053120} a^{9} - \frac{8584240574308012241}{1765316039033075338240} a^{8} + \frac{62917588343418404411}{6178606136615763683840} a^{7} + \frac{15190360005356515401}{77232576707697046048} a^{6} - \frac{179692610149252960427}{4942884909292610947072} a^{5} + \frac{1951851008338641227}{27583063109891802160} a^{4} + \frac{5574368217062783595181}{12357212273231527367680} a^{3} + \frac{9043502014473732158063}{24714424546463054735360} a^{2} - \frac{112079178470779203721}{353063207806615067648} a + \frac{2059905981317131030393}{6178606136615763683840}$
Class group and class number
$C_{6}\times C_{6}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9603674.43615 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-107}) \), 3.1.8667.2 x3, 3.1.107.1 x3, 3.1.8667.3 x3, 3.1.8667.1 x3, 6.0.8037507123.3, 6.0.1225043.1, 6.0.8037507123.4, 6.0.8037507123.2, 9.1.69661074235041.6 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $107$ | 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |