Normalized defining polynomial
\( x^{18} - 6 x^{17} + 12 x^{16} - 28 x^{15} + 171 x^{14} - 192 x^{13} - 252 x^{12} + 624 x^{11} + 537 x^{10} + 4550 x^{9} + 11598 x^{8} + 23070 x^{7} + 61893 x^{6} + 117033 x^{5} + 211056 x^{4} + 282511 x^{3} + 269637 x^{2} + 183555 x + 59273 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-519235183203048555634413069867=-\,3^{24}\cdot 107^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{107} a^{12} + \frac{46}{107} a^{11} + \frac{25}{107} a^{10} + \frac{43}{107} a^{9} - \frac{44}{107} a^{8} - \frac{46}{107} a^{7} + \frac{1}{107} a^{6} + \frac{4}{107} a^{5} - \frac{18}{107} a^{4} + \frac{19}{107} a^{3} + \frac{53}{107} a^{2} + \frac{44}{107} a - \frac{21}{107}$, $\frac{1}{107} a^{13} + \frac{49}{107} a^{11} - \frac{37}{107} a^{10} + \frac{11}{107} a^{9} + \frac{52}{107} a^{8} - \frac{23}{107} a^{7} - \frac{42}{107} a^{6} + \frac{12}{107} a^{5} - \frac{9}{107} a^{4} + \frac{35}{107} a^{3} - \frac{40}{107} a^{2} - \frac{12}{107} a + \frac{3}{107}$, $\frac{1}{5671} a^{14} + \frac{23}{5671} a^{13} + \frac{21}{5671} a^{12} - \frac{32}{107} a^{11} + \frac{1777}{5671} a^{10} - \frac{21}{107} a^{9} - \frac{2517}{5671} a^{8} - \frac{2707}{5671} a^{7} - \frac{340}{5671} a^{6} + \frac{2081}{5671} a^{5} + \frac{2044}{5671} a^{4} + \frac{2266}{5671} a^{3} + \frac{687}{5671} a^{2} + \frac{421}{5671} a + \frac{2690}{5671}$, $\frac{1}{5671} a^{15} + \frac{22}{5671} a^{13} - \frac{6}{5671} a^{12} + \frac{2254}{5671} a^{11} - \frac{1598}{5671} a^{10} - \frac{2411}{5671} a^{9} - \frac{1526}{5671} a^{8} + \frac{812}{5671} a^{7} + \frac{1156}{5671} a^{6} - \frac{2412}{5671} a^{5} + \frac{2106}{5671} a^{4} + \frac{2735}{5671} a^{3} - \frac{805}{5671} a^{2} - \frac{2806}{5671} a + \frac{1836}{5671}$, $\frac{1}{54004933} a^{16} + \frac{1494}{54004933} a^{15} - \frac{3635}{54004933} a^{14} + \frac{121213}{54004933} a^{13} + \frac{249121}{54004933} a^{12} + \frac{10329442}{54004933} a^{11} - \frac{315670}{1018961} a^{10} - \frac{6419874}{54004933} a^{9} + \frac{23998739}{54004933} a^{8} + \frac{19441355}{54004933} a^{7} - \frac{25946224}{54004933} a^{6} + \frac{12762805}{54004933} a^{5} - \frac{20360429}{54004933} a^{4} + \frac{20653509}{54004933} a^{3} + \frac{23844497}{54004933} a^{2} + \frac{149132}{606797} a - \frac{24416442}{54004933}$, $\frac{1}{936179514684311635396950371} a^{17} - \frac{74423211307959538}{10518870951509119498842139} a^{16} - \frac{59445202069287496523767}{936179514684311635396950371} a^{15} + \frac{82240482988652163999221}{936179514684311635396950371} a^{14} + \frac{2701377512314310126073081}{936179514684311635396950371} a^{13} - \frac{2367696679022985779308196}{936179514684311635396950371} a^{12} + \frac{107111694770118192968091809}{936179514684311635396950371} a^{11} + \frac{267788882804267750754564352}{936179514684311635396950371} a^{10} + \frac{73411078751399217579983040}{936179514684311635396950371} a^{9} + \frac{1747469123399344122546948}{936179514684311635396950371} a^{8} - \frac{262126853307122838051116569}{936179514684311635396950371} a^{7} - \frac{223502080839154753387010059}{936179514684311635396950371} a^{6} - \frac{136361266237992469834637307}{936179514684311635396950371} a^{5} - \frac{135414611080302855343430273}{936179514684311635396950371} a^{4} + \frac{216873841669414098505705024}{936179514684311635396950371} a^{3} - \frac{238036567317240160288925653}{936179514684311635396950371} a^{2} + \frac{121240568315695823065139744}{936179514684311635396950371} a + \frac{280404023043560234861051592}{936179514684311635396950371}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{18}$, which has order $144$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 146101.088241 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-107}) \), 3.1.8667.1 x3, \(\Q(\zeta_{9})^+\), 6.0.8037507123.2, 6.0.99228483.1 x2, 6.0.8037507123.1, 9.3.651038076963.10 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.99228483.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $107$ | 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |