Normalized defining polynomial
\( x^{18} - 3 x^{17} + 8 x^{16} + 12 x^{15} + 181 x^{14} - 201 x^{13} + 554 x^{12} + 4448 x^{11} + 1722 x^{10} - 19194 x^{9} + 21415 x^{8} + 61786 x^{7} - 43679 x^{6} - 81955 x^{5} + 216263 x^{4} + 55577 x^{3} - 55738 x^{2} - 11032 x + 352312 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-51906361512443096981169273175191=-\,3^{9}\cdot 13^{15}\cdot 61^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{47} a^{13} + \frac{13}{47} a^{12} - \frac{11}{47} a^{11} + \frac{12}{47} a^{10} - \frac{18}{47} a^{9} - \frac{19}{47} a^{8} + \frac{12}{47} a^{7} - \frac{2}{47} a^{6} - \frac{22}{47} a^{5} - \frac{7}{47} a^{4} + \frac{19}{47} a^{3} + \frac{1}{47} a^{2} + \frac{21}{47} a$, $\frac{1}{47} a^{14} + \frac{8}{47} a^{12} + \frac{14}{47} a^{11} + \frac{14}{47} a^{10} - \frac{20}{47} a^{9} - \frac{23}{47} a^{8} - \frac{17}{47} a^{7} + \frac{4}{47} a^{6} - \frac{3}{47} a^{5} + \frac{16}{47} a^{4} - \frac{11}{47} a^{3} + \frac{8}{47} a^{2} + \frac{9}{47} a$, $\frac{1}{47} a^{15} + \frac{4}{47} a^{12} + \frac{8}{47} a^{11} - \frac{22}{47} a^{10} - \frac{20}{47} a^{9} - \frac{6}{47} a^{8} + \frac{2}{47} a^{7} + \frac{13}{47} a^{6} + \frac{4}{47} a^{5} - \frac{2}{47} a^{4} - \frac{3}{47} a^{3} + \frac{1}{47} a^{2} + \frac{20}{47} a$, $\frac{1}{94} a^{16} - \frac{1}{94} a^{15} - \frac{1}{94} a^{12} - \frac{33}{94} a^{11} - \frac{23}{47} a^{10} - \frac{4}{47} a^{9} - \frac{5}{47} a^{8} + \frac{5}{47} a^{7} - \frac{1}{94} a^{6} - \frac{6}{47} a^{5} + \frac{27}{94} a^{4} - \frac{25}{94} a^{3} + \frac{15}{94} a^{2} + \frac{37}{94} a$, $\frac{1}{5383098276789006553285369986174309553259982908} a^{17} + \frac{28540105743666204797345427249299781414511073}{5383098276789006553285369986174309553259982908} a^{16} + \frac{9137274400875898826907956291029266837521185}{1345774569197251638321342496543577388314995727} a^{15} - \frac{11268670507660461499209854358483581505751184}{1345774569197251638321342496543577388314995727} a^{14} - \frac{51739995302539952529602181464641025118319083}{5383098276789006553285369986174309553259982908} a^{13} - \frac{1257453765698272118052199238648461796326954365}{5383098276789006553285369986174309553259982908} a^{12} + \frac{967738057773997645689268734795865132722023517}{2691549138394503276642684993087154776629991454} a^{11} + \frac{635872871603797584009682351454338461314507969}{1345774569197251638321342496543577388314995727} a^{10} + \frac{1254473918465680964862853097545552012281616117}{2691549138394503276642684993087154776629991454} a^{9} - \frac{336734591916316123504550037067353313184755141}{2691549138394503276642684993087154776629991454} a^{8} - \frac{1971884082239688483392962099446799680549360633}{5383098276789006553285369986174309553259982908} a^{7} + \frac{144432758364156566664575852049911330285326983}{2691549138394503276642684993087154776629991454} a^{6} - \frac{1113471865129389959965754872788431433274748775}{5383098276789006553285369986174309553259982908} a^{5} + \frac{324516247816408040257933547559918150531083217}{5383098276789006553285369986174309553259982908} a^{4} + \frac{1492225352421051078423654383637298700023349963}{5383098276789006553285369986174309553259982908} a^{3} - \frac{162274246025705554520791702795925603918999331}{5383098276789006553285369986174309553259982908} a^{2} - \frac{534617439306005087132622051709940209734467581}{2691549138394503276642684993087154776629991454} a + \frac{289276906678428064826713176343088144711834}{28633501472281949751517925458373986985425441}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{140}$, which has order $1120$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 230602.64598601736 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.169.1, 3.3.10309.1, 6.0.37302693831.1, 6.0.10024911.1, 9.9.1095593933629.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13 | Data not computed | ||||||
| $61$ | 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |