Normalized defining polynomial
\( x^{18} - 6 x^{17} + 24 x^{16} - 78 x^{15} + 216 x^{14} - 714 x^{13} + 2135 x^{12} - 5022 x^{11} + 7298 x^{10} - 686 x^{9} - 15438 x^{8} + 30174 x^{7} + 19897 x^{6} - 100260 x^{5} + 3110 x^{4} + 71956 x^{3} + 25906 x^{2} + 1900 x + 703 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-51763447257109020902974751244288=-\,2^{26}\cdot 3^{9}\cdot 19^{6}\cdot 97^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{1394186} a^{15} - \frac{5}{1394186} a^{14} + \frac{90849}{697093} a^{13} - \frac{133493}{697093} a^{12} + \frac{47292}{697093} a^{11} - \frac{101134}{697093} a^{10} - \frac{158887}{1394186} a^{9} + \frac{239339}{697093} a^{8} - \frac{25698}{697093} a^{7} + \frac{5529}{1394186} a^{6} + \frac{235683}{697093} a^{5} + \frac{315487}{697093} a^{4} + \frac{325819}{697093} a^{3} + \frac{323855}{1394186} a^{2} + \frac{2815}{697093} a + \frac{128797}{1394186}$, $\frac{1}{9759302} a^{16} - \frac{3}{9759302} a^{15} + \frac{2272967}{9759302} a^{14} + \frac{745298}{4879651} a^{13} + \frac{1651891}{9759302} a^{12} - \frac{703643}{4879651} a^{11} + \frac{66835}{4879651} a^{10} - \frac{1930375}{9759302} a^{9} - \frac{2335392}{4879651} a^{8} + \frac{1694101}{4879651} a^{7} - \frac{1608855}{9759302} a^{6} - \frac{1304426}{4879651} a^{5} + \frac{1216493}{9759302} a^{4} - \frac{2323353}{4879651} a^{3} + \frac{192919}{1394186} a^{2} - \frac{139373}{697093} a - \frac{1962482}{4879651}$, $\frac{1}{62224296667317392782221633362} a^{17} - \frac{1038722506903870908382}{31112148333658696391110816681} a^{16} - \frac{1307186826390701969336}{31112148333658696391110816681} a^{15} - \frac{4103052004441625500946259714}{31112148333658696391110816681} a^{14} - \frac{320103014509088679793811874}{4444592619094099484444402383} a^{13} - \frac{92473624916120079222493761}{1269883605455456995555543538} a^{12} + \frac{249218035709470649402287485}{4444592619094099484444402383} a^{11} - \frac{2425688252811691288638168320}{31112148333658696391110816681} a^{10} - \frac{11260645771388281437097127385}{62224296667317392782221633362} a^{9} - \frac{759839738513099838681838193}{1637481491245194546900569299} a^{8} + \frac{11300082473788638202638268458}{31112148333658696391110816681} a^{7} - \frac{1803655089198057831642400223}{8889185238188198968888804766} a^{6} + \frac{13651570873046504303658737225}{62224296667317392782221633362} a^{5} - \frac{2230634794512788962820769946}{31112148333658696391110816681} a^{4} - \frac{11852252024752839402875865387}{62224296667317392782221633362} a^{3} - \frac{2090362849009697891276647991}{4444592619094099484444402383} a^{2} + \frac{109640209214640600737948940}{1637481491245194546900569299} a + \frac{204445605171525418193809502}{1637481491245194546900569299}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{28079280852}{89014065842599} a^{17} + \frac{175872361889}{89014065842599} a^{16} - \frac{1442240101377}{178028131685198} a^{15} + \frac{4777022621963}{178028131685198} a^{14} - \frac{6731116398720}{89014065842599} a^{13} + \frac{21952196886656}{89014065842599} a^{12} - \frac{132238047001901}{178028131685198} a^{11} + \frac{319183727878739}{178028131685198} a^{10} - \frac{501354972398623}{178028131685198} a^{9} + \frac{9991909927137}{9369901667642} a^{8} + \frac{780433159484867}{178028131685198} a^{7} - \frac{1869158341439505}{178028131685198} a^{6} - \frac{587882334282259}{178028131685198} a^{5} + \frac{5650489807077083}{178028131685198} a^{4} - \frac{768664550714144}{89014065842599} a^{3} - \frac{1647153017172606}{89014065842599} a^{2} - \frac{50871716161445}{9369901667642} a - \frac{99236886313}{9369901667642} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 511066585.49785817 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.152.1, 6.0.4064688.2, 6.0.623808.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.22.27 | $x^{12} + 2 x^{6} + 4$ | $6$ | $2$ | $22$ | $C_6\times S_3$ | $[3]_{3}^{6}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $97$ | 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 97.3.2.2 | $x^{3} + 485$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 97.6.4.3 | $x^{6} + 873 x^{3} + 235225$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |