Normalized defining polynomial
\( x^{18} - x^{17} - 339 x^{16} - 46 x^{15} + 47557 x^{14} + 56007 x^{13} - 3490681 x^{12} - 7365053 x^{11} + 144682296 x^{10} + 437794222 x^{9} - 3261383845 x^{8} - 13326944589 x^{7} + 32763269619 x^{6} + 195609354075 x^{5} - 27367760547 x^{4} - 1043363367495 x^{3} + 187960310919 x^{2} + 6621321395790 x + 10883991773043 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-51620863001368675404465326891529689310638927567087468544=-\,2^{18}\cdot 3^{6}\cdot 11^{9}\cdot 523^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1244.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 523$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{4}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{5}$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{10} - \frac{1}{18} a^{6} + \frac{1}{18} a^{4} - \frac{1}{2}$, $\frac{1}{54} a^{13} + \frac{1}{54} a^{12} + \frac{1}{54} a^{11} - \frac{1}{18} a^{10} + \frac{5}{54} a^{7} + \frac{5}{54} a^{6} - \frac{1}{54} a^{5} + \frac{5}{18} a^{4} - \frac{4}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{162} a^{14} + \frac{1}{162} a^{13} + \frac{2}{81} a^{12} - \frac{1}{54} a^{11} - \frac{1}{54} a^{10} - \frac{1}{27} a^{9} - \frac{7}{162} a^{8} + \frac{17}{162} a^{7} + \frac{10}{81} a^{6} - \frac{1}{6} a^{5} + \frac{7}{54} a^{4} - \frac{2}{9} a^{3} - \frac{7}{18} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{162} a^{15} - \frac{1}{162} a^{12} - \frac{1}{54} a^{11} - \frac{1}{54} a^{10} - \frac{1}{162} a^{9} + \frac{1}{27} a^{8} + \frac{1}{27} a^{7} + \frac{19}{162} a^{6} + \frac{5}{54} a^{5} + \frac{17}{54} a^{4} + \frac{1}{18} a^{3} - \frac{4}{9} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{4266659241924822} a^{16} + \frac{434971609613}{4266659241924822} a^{15} + \frac{14670056923}{11562762173238} a^{14} + \frac{1512107501}{581367930498} a^{13} + \frac{109192139983873}{4266659241924822} a^{12} - \frac{28301942004088}{711109873654137} a^{11} + \frac{65388158784001}{2133329620962411} a^{10} - \frac{180919181323199}{4266659241924822} a^{9} - \frac{19720664969735}{474073249102758} a^{8} + \frac{561130088114719}{4266659241924822} a^{7} - \frac{462028725900817}{4266659241924822} a^{6} + \frac{40444626669094}{711109873654137} a^{5} - \frac{250916977642876}{711109873654137} a^{4} - \frac{47529074849}{882817968534} a^{3} + \frac{41958673563748}{237036624551379} a^{2} - \frac{12868297859927}{79012208183793} a - \frac{23563679575529}{52674805455862}$, $\frac{1}{195662776036544418950895976821024306142406822982899959613967226473348114} a^{17} + \frac{3912997598525681325184430136665109199592377295682036031}{97831388018272209475447988410512153071203411491449979806983613236674057} a^{16} + \frac{18934928128546215648782690819853937753763584130483250642338788711279}{21740308448504935438988441869002700682489646998099995512663025163705346} a^{15} - \frac{4471136480275507570476053719473183540594044210386096385415188612428}{2386131415079809987206048497817369587102522231498779995292283249674977} a^{14} - \frac{797306375194409627050174020979659938476597095412193068551977317454230}{97831388018272209475447988410512153071203411491449979806983613236674057} a^{13} + \frac{59966249470293962372208340995398212718521954426584436061222848966493}{7246769482834978479662813956334233560829882332699998504221008387901782} a^{12} - \frac{10210865842193567725900076077908256721202307249008820900072024932467449}{195662776036544418950895976821024306142406822982899959613967226473348114} a^{11} + \frac{5908348020229725668026113534369454643570050076405188475063480957839039}{195662776036544418950895976821024306142406822982899959613967226473348114} a^{10} + \frac{1031659625468029931571992650896014049366960437895080005431319576190903}{21740308448504935438988441869002700682489646998099995512663025163705346} a^{9} - \frac{4696541952421655761416979116952762480699210066476173256945738077870470}{97831388018272209475447988410512153071203411491449979806983613236674057} a^{8} - \frac{15805982536664637048694647166991064152340741998586017443779182074458857}{97831388018272209475447988410512153071203411491449979806983613236674057} a^{7} - \frac{74433396422060202111621545836547416426822272079025344261920769274227}{1278841673441466790528731874647217687205273352829411500744883833159138} a^{6} - \frac{7878842683359826091205223651543392401616360690114608061981944140795709}{65220925345514806316965325607008102047468940994299986537989075491116038} a^{5} - \frac{334612575598709081268838773809472202939475911673730714588290122327009}{21740308448504935438988441869002700682489646998099995512663025163705346} a^{4} - \frac{4563132355467163746705573506285882966708754020057641560806646830212067}{10870154224252467719494220934501350341244823499049997756331512581852673} a^{3} + \frac{34362982630590232902650279626116716272944344104711816455718071069343}{71046759635637043918262881924845427066959630712745083374715768508841} a^{2} + \frac{47507884282062650384952050640857520359159115392926006493927770507943}{402598304601943248870156330907457420046104574038888805790056021550099} a - \frac{7275843033889886777638988913580260154877411246376085929717555857403}{47364506423758029278841921283230284711306420475163388916477179005894}$
Class group and class number
$C_{2}\times C_{7931527162}$, which has order $15863054324$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1120251490200.2412 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.3.273529.1, 3.3.12552.1, 6.0.99582909522371.1, 6.0.209702649024.1, 9.9.147960417197346328355328.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 523 | Data not computed | ||||||