Normalized defining polynomial
\( x^{18} - 6 x^{17} + 51 x^{16} + 42 x^{15} - 1611 x^{14} + 15876 x^{13} - 67656 x^{12} + 114906 x^{11} + 769713 x^{10} - 7444440 x^{9} + 36860769 x^{8} - 126914076 x^{7} + 339321753 x^{6} - 715801902 x^{5} + 1239478116 x^{4} - 1811464128 x^{3} + 2278390032 x^{2} - 2293113888 x + 2010480704 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5132921777297808355912172232996877887=-\,3^{30}\cdot 7^{12}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{28} a^{9} - \frac{3}{28} a^{8} - \frac{1}{7} a^{5} + \frac{1}{14} a^{4} - \frac{5}{28} a^{3} + \frac{3}{28} a^{2} - \frac{3}{14} a - \frac{2}{7}$, $\frac{1}{56} a^{10} - \frac{1}{56} a^{9} - \frac{3}{28} a^{8} - \frac{1}{4} a^{7} - \frac{1}{14} a^{6} - \frac{3}{28} a^{5} + \frac{13}{56} a^{4} + \frac{3}{8} a^{3} - \frac{5}{14} a - \frac{2}{7}$, $\frac{1}{112} a^{11} + \frac{1}{112} a^{9} + \frac{3}{28} a^{8} + \frac{5}{56} a^{7} + \frac{9}{56} a^{6} + \frac{3}{112} a^{5} - \frac{3}{56} a^{4} + \frac{9}{112} a^{3} - \frac{3}{14} a^{2} - \frac{3}{14}$, $\frac{1}{448} a^{12} - \frac{1}{448} a^{10} + \frac{3}{224} a^{9} - \frac{5}{224} a^{8} + \frac{51}{224} a^{7} - \frac{45}{448} a^{6} + \frac{47}{224} a^{5} - \frac{33}{448} a^{4} + \frac{15}{224} a^{3} - \frac{3}{56} a^{2} + \frac{15}{56} a + \frac{13}{28}$, $\frac{1}{448} a^{13} - \frac{1}{448} a^{11} - \frac{1}{224} a^{10} - \frac{1}{224} a^{9} + \frac{19}{224} a^{8} + \frac{67}{448} a^{7} - \frac{7}{32} a^{6} + \frac{15}{448} a^{5} - \frac{37}{224} a^{4} + \frac{1}{14} a^{3} - \frac{27}{56} a^{2} - \frac{5}{28} a + \frac{2}{7}$, $\frac{1}{2688} a^{14} - \frac{1}{2688} a^{13} + \frac{1}{2688} a^{12} + \frac{1}{384} a^{11} + \frac{1}{192} a^{10} + \frac{1}{96} a^{9} + \frac{19}{896} a^{8} - \frac{5}{128} a^{7} + \frac{109}{896} a^{6} + \frac{77}{384} a^{5} + \frac{11}{48} a^{4} - \frac{205}{672} a^{3} - \frac{131}{336} a^{2} + \frac{5}{12} a + \frac{13}{84}$, $\frac{1}{666624} a^{15} - \frac{15}{111104} a^{14} + \frac{1}{111104} a^{13} + \frac{241}{333312} a^{12} + \frac{65}{222208} a^{11} - \frac{461}{111104} a^{10} + \frac{5293}{666624} a^{9} - \frac{1791}{111104} a^{8} + \frac{3155}{55552} a^{7} - \frac{9487}{41664} a^{6} - \frac{16501}{222208} a^{5} + \frac{6857}{27776} a^{4} + \frac{13561}{166656} a^{3} - \frac{339}{27776} a^{2} - \frac{2725}{6944} a + \frac{121}{20832}$, $\frac{1}{1333248} a^{16} - \frac{79}{666624} a^{14} + \frac{263}{666624} a^{13} + \frac{919}{1333248} a^{12} + \frac{211}{83328} a^{11} - \frac{533}{444416} a^{10} - \frac{2929}{166656} a^{9} - \frac{969}{13888} a^{8} + \frac{2947}{23808} a^{7} + \frac{104043}{444416} a^{6} + \frac{105745}{666624} a^{5} - \frac{1675}{333312} a^{4} + \frac{12745}{41664} a^{3} - \frac{30619}{83328} a^{2} + \frac{5601}{13888} a + \frac{8669}{20832}$, $\frac{1}{9122380906498417152085860391027799331654875480064} a^{17} - \frac{1164407069021372365433639944635303748365}{9242533846502955574555076384020060113125507072} a^{16} + \frac{1888028008440222912321981645274355036177821}{4561190453249208576042930195513899665827437740032} a^{15} + \frac{371799640241016384000665818055202774766097}{23756200277339628000223594768301560759517904896} a^{14} - \frac{4309963705577985021267157824435555483550712779}{9122380906498417152085860391027799331654875480064} a^{13} - \frac{8323919985879471356854954238169761744661307945}{9122380906498417152085860391027799331654875480064} a^{12} + \frac{3926748789225090805478565475105135700216432825}{9122380906498417152085860391027799331654875480064} a^{11} + \frac{5093145124265229932984540548924212875267374025}{9122380906498417152085860391027799331654875480064} a^{10} + \frac{2632134068027023388409345014243372481985904027}{190049602218717024001788758146412486076143239168} a^{9} - \frac{23905412843207674945669338907285097962385071565}{1140297613312302144010732548878474916456859435008} a^{8} + \frac{267537887757750147488815282160924552943206459011}{3040793635499472384028620130342599777218291826688} a^{7} + \frac{1400003294212623433946303087061784700169370070659}{9122380906498417152085860391027799331654875480064} a^{6} - \frac{7462555779815555944921266137421855484241939181}{49045058637088264258526131134558060922875674624} a^{5} + \frac{58065755996510446341007486509851889483332179435}{325799318089229184003066442536707118987674124288} a^{4} + \frac{40898758440458321963052756736065838936761056845}{570148806656151072005366274439237458228429717504} a^{3} + \frac{112211108066000520695575847712388019801297379199}{570148806656151072005366274439237458228429717504} a^{2} + \frac{9656582322809003510898875639507575981455907733}{285074403328075536002683137219618729114214858752} a - \frac{4498661987612811825210419425810550391670101405}{47512400554679256000447189536603121519035809792}$
Class group and class number
$C_{3}\times C_{6}\times C_{9198}$, which has order $165564$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 237885673.5279126 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.3.3969.1, 3.3.621.1, 6.0.191666276487.2, 6.0.8869743.1, 9.9.20539533187176381.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.15.28 | $x^{9} + 3 x^{8} + 6 x^{7} + 3 x^{3} + 6$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ |
| 3.9.15.28 | $x^{9} + 3 x^{8} + 6 x^{7} + 3 x^{3} + 6$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| $7$ | 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |