Normalized defining polynomial
\( x^{18} - 18 x^{14} - 57 x^{12} + 177 x^{10} + 1134 x^{8} + 506 x^{6} - 1977 x^{4} + 234 x^{2} + 575 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-508698711308514601331703=-\,3^{24}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{9} - \frac{1}{2} a^{8} - \frac{3}{10} a^{7} + \frac{2}{5} a^{5} - \frac{1}{2} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{10} - \frac{3}{10} a^{8} - \frac{1}{10} a^{6} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3} + \frac{3}{10} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{9} + \frac{3}{10} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{3}{10} a^{3} - \frac{1}{2} a^{2} + \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{2530} a^{14} - \frac{1}{506} a^{12} + \frac{124}{1265} a^{10} + \frac{14}{1265} a^{8} - \frac{1}{2} a^{7} + \frac{35}{253} a^{6} - \frac{1}{2} a^{5} - \frac{193}{2530} a^{4} + \frac{533}{1265} a^{2} - \frac{1}{2} a + \frac{5}{22}$, $\frac{1}{2530} a^{15} - \frac{1}{506} a^{13} - \frac{1}{506} a^{11} + \frac{267}{1265} a^{9} + \frac{1109}{2530} a^{7} - \frac{1}{2} a^{6} - \frac{241}{506} a^{5} - \frac{1}{2} a^{4} + \frac{56}{253} a^{3} + \frac{47}{110} a$, $\frac{1}{2206364930} a^{16} - \frac{266471}{2206364930} a^{14} + \frac{451372}{157597495} a^{12} + \frac{90313675}{441272986} a^{10} - \frac{235732614}{1103182465} a^{8} + \frac{209987567}{2206364930} a^{6} - \frac{1}{2} a^{5} - \frac{43503043}{100289315} a^{4} + \frac{317828607}{1103182465} a^{2} - \frac{1}{2} a + \frac{1408749}{19185782}$, $\frac{1}{2206364930} a^{17} - \frac{266471}{2206364930} a^{15} + \frac{451372}{157597495} a^{13} + \frac{10295389}{2206364930} a^{11} + \frac{205540372}{1103182465} a^{9} - \frac{134511681}{441272986} a^{7} - \frac{1}{2} a^{6} - \frac{4689036}{20057863} a^{5} - \frac{123444379}{1103182465} a^{3} - \frac{1}{2} a^{2} + \frac{45415309}{95928910} a$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10047.0042383 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.23.1 x3, 6.0.12167.1, 9.1.148718980881.2 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.3 | $x^{9} + 6 x^{8} + 3 x^{6} + 9 x^{3} + 135$ | $3$ | $3$ | $12$ | $C_9$ | $[2]^{3}$ |
| 3.9.12.3 | $x^{9} + 6 x^{8} + 3 x^{6} + 9 x^{3} + 135$ | $3$ | $3$ | $12$ | $C_9$ | $[2]^{3}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |