Properties

Label 18.0.50420270191...0000.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{18}\cdot 3^{44}\cdot 5^{9}$
Root discriminant $65.59$
Ramified primes $2, 3, 5$
Class number $24966$ (GRH)
Class group $[24966]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![33385281, -34668, 24883956, 39510, 9427185, -8244, 2361801, 378, 430038, -2, 59292, 0, 6219, 0, 495, 0, 27, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 27*x^16 + 495*x^14 + 6219*x^12 + 59292*x^10 - 2*x^9 + 430038*x^8 + 378*x^7 + 2361801*x^6 - 8244*x^5 + 9427185*x^4 + 39510*x^3 + 24883956*x^2 - 34668*x + 33385281)
 
gp: K = bnfinit(x^18 + 27*x^16 + 495*x^14 + 6219*x^12 + 59292*x^10 - 2*x^9 + 430038*x^8 + 378*x^7 + 2361801*x^6 - 8244*x^5 + 9427185*x^4 + 39510*x^3 + 24883956*x^2 - 34668*x + 33385281, 1)
 

Normalized defining polynomial

\( x^{18} + 27 x^{16} + 495 x^{14} + 6219 x^{12} + 59292 x^{10} - 2 x^{9} + 430038 x^{8} + 378 x^{7} + 2361801 x^{6} - 8244 x^{5} + 9427185 x^{4} + 39510 x^{3} + 24883956 x^{2} - 34668 x + 33385281 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-504202701918008951235072000000000=-\,2^{18}\cdot 3^{44}\cdot 5^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $65.59$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(540=2^{2}\cdot 3^{3}\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{540}(1,·)$, $\chi_{540}(259,·)$, $\chi_{540}(199,·)$, $\chi_{540}(139,·)$, $\chi_{540}(79,·)$, $\chi_{540}(19,·)$, $\chi_{540}(481,·)$, $\chi_{540}(421,·)$, $\chi_{540}(361,·)$, $\chi_{540}(301,·)$, $\chi_{540}(241,·)$, $\chi_{540}(499,·)$, $\chi_{540}(181,·)$, $\chi_{540}(439,·)$, $\chi_{540}(121,·)$, $\chi_{540}(379,·)$, $\chi_{540}(61,·)$, $\chi_{540}(319,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{58470156136560885192272482601249317018645708669009} a^{17} + \frac{19729955646141637448614677758616097926384504947124}{58470156136560885192272482601249317018645708669009} a^{16} - \frac{9466671784283424155896270635979362352871127558046}{58470156136560885192272482601249317018645708669009} a^{15} + \frac{24231436461898208897896352924313680334484059663187}{58470156136560885192272482601249317018645708669009} a^{14} + \frac{28670491505809160019453414393806824992390288777451}{58470156136560885192272482601249317018645708669009} a^{13} + \frac{3554502070053123205155468091413102601392282716921}{58470156136560885192272482601249317018645708669009} a^{12} - \frac{19904339165908078887643910398806863021307563098919}{58470156136560885192272482601249317018645708669009} a^{11} + \frac{1969962903523027387373243812725080630841062124686}{58470156136560885192272482601249317018645708669009} a^{10} + \frac{20026241565168442634733270546886039296608752973786}{58470156136560885192272482601249317018645708669009} a^{9} - \frac{28519401045287036181342735145196152486553855217851}{58470156136560885192272482601249317018645708669009} a^{8} - \frac{9155265956013516176417054612028133011750449126738}{58470156136560885192272482601249317018645708669009} a^{7} - \frac{23861742304153858844035694204193525805353271856153}{58470156136560885192272482601249317018645708669009} a^{6} - \frac{23451317063478653278817311886561563668017197620380}{58470156136560885192272482601249317018645708669009} a^{5} + \frac{27116021886895225035088287151483514248793959509889}{58470156136560885192272482601249317018645708669009} a^{4} + \frac{16731345769519962638809483573653163355924358746335}{58470156136560885192272482601249317018645708669009} a^{3} + \frac{25306229818617207095207117429728287676611193911200}{58470156136560885192272482601249317018645708669009} a^{2} + \frac{27467841857739674785370003611362423350218198963832}{58470156136560885192272482601249317018645708669009} a - \frac{26219106214527490209148304311993035429353375166824}{58470156136560885192272482601249317018645708669009}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{24966}$, which has order $24966$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40934.0329443 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\zeta_{9})^+\), 6.0.52488000.1, \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.9.22.8$x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.8$x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
5Data not computed