Normalized defining polynomial
\( x^{18} - 60 x^{15} + 1752 x^{12} - 33120 x^{9} + 265824 x^{6} + 1073088 x^{3} + 1259712 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-50396986113842071567939653456703488=-\,2^{12}\cdot 3^{33}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{12} a^{6}$, $\frac{1}{12} a^{7}$, $\frac{1}{12} a^{8}$, $\frac{1}{144} a^{9} - \frac{1}{6} a^{3} - \frac{1}{2}$, $\frac{1}{144} a^{10} - \frac{1}{6} a^{4} - \frac{1}{2} a$, $\frac{1}{144} a^{11} - \frac{1}{6} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{9792} a^{12} - \frac{11}{4896} a^{9} + \frac{1}{136} a^{6} + \frac{97}{408} a^{3} + \frac{21}{68}$, $\frac{1}{29376} a^{13} - \frac{5}{1632} a^{10} + \frac{37}{1224} a^{7} - \frac{27}{136} a^{4} + \frac{55}{204} a$, $\frac{1}{88128} a^{14} - \frac{49}{14688} a^{11} + \frac{37}{3672} a^{8} - \frac{13}{1224} a^{5} - \frac{251}{612} a^{2}$, $\frac{1}{2138866560} a^{15} - \frac{2683}{356477760} a^{12} - \frac{109273}{44559720} a^{9} + \frac{1165751}{29706480} a^{6} - \frac{3501593}{14853240} a^{3} + \frac{24127}{137530}$, $\frac{1}{6416599680} a^{16} - \frac{2683}{1069433280} a^{13} - \frac{109273}{133679160} a^{10} + \frac{1165751}{89119440} a^{7} - \frac{10928213}{44559720} a^{4} - \frac{37801}{137530} a$, $\frac{1}{19249799040} a^{17} - \frac{2683}{3208299840} a^{14} - \frac{109273}{401037480} a^{11} - \frac{6260869}{267358320} a^{8} - \frac{33208073}{133679160} a^{5} - \frac{37801}{412590} a^{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{9}$, which has order $81$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{143}{62907840} a^{15} + \frac{2833}{20969280} a^{12} - \frac{42863}{10484640} a^{9} + \frac{8614}{109215} a^{6} - \frac{592027}{873720} a^{3} - \frac{11239}{16180} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1228939086.8309562 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$He_3:C_2$ (as 18T21):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $He_3:C_2$ |
| Character table for $He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1083.1 x3, 6.0.3518667.2, 9.1.129610938470796864.28 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.18 | $x^{6} + 21 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| 3.6.11.18 | $x^{6} + 21 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |