Normalized defining polynomial
\( x^{18} - 2 x^{17} - 6 x^{16} + 22 x^{15} + 24 x^{14} - 200 x^{13} + 553 x^{12} - 586 x^{11} + 462 x^{10} - 1000 x^{9} + 5130 x^{8} - 10366 x^{7} + 5855 x^{6} + 100 x^{5} + 6984 x^{4} - 27518 x^{3} + 32286 x^{2} - 14018 x + 8471 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-502592611936843000000000000=-\,2^{12}\cdot 5^{12}\cdot 43^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6}$, $\frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{7}{18} a^{4} - \frac{1}{2} a^{3} + \frac{1}{18} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{9} + \frac{1}{18} a^{8} - \frac{1}{9} a^{7} - \frac{1}{6} a^{6} + \frac{1}{18} a^{5} - \frac{4}{9} a^{4} + \frac{1}{18} a^{3} + \frac{1}{6} a^{2} - \frac{1}{9} a + \frac{7}{18}$, $\frac{1}{378} a^{12} + \frac{5}{189} a^{11} - \frac{23}{378} a^{9} - \frac{1}{18} a^{8} + \frac{13}{378} a^{7} + \frac{2}{63} a^{6} + \frac{53}{189} a^{5} - \frac{17}{63} a^{4} + \frac{85}{378} a^{3} + \frac{5}{18} a^{2} + \frac{79}{378} a - \frac{85}{378}$, $\frac{1}{756} a^{13} + \frac{5}{756} a^{11} + \frac{19}{756} a^{10} + \frac{41}{756} a^{9} - \frac{29}{756} a^{8} + \frac{113}{756} a^{7} - \frac{5}{108} a^{6} - \frac{19}{108} a^{5} - \frac{155}{756} a^{4} - \frac{325}{756} a^{3} - \frac{47}{756} a^{2} + \frac{11}{54} a + \frac{283}{756}$, $\frac{1}{6804} a^{14} + \frac{1}{1701} a^{13} + \frac{1}{972} a^{12} + \frac{143}{6804} a^{11} - \frac{5}{252} a^{10} - \frac{79}{6804} a^{9} + \frac{181}{2268} a^{8} + \frac{779}{6804} a^{7} + \frac{253}{2268} a^{6} + \frac{2129}{6804} a^{5} + \frac{653}{2268} a^{4} - \frac{3109}{6804} a^{3} + \frac{800}{1701} a^{2} - \frac{305}{972} a - \frac{233}{3402}$, $\frac{1}{34020} a^{15} - \frac{1}{34020} a^{14} - \frac{1}{8505} a^{13} + \frac{1}{1890} a^{12} - \frac{193}{34020} a^{11} + \frac{389}{34020} a^{10} - \frac{2293}{34020} a^{9} + \frac{449}{34020} a^{8} - \frac{2911}{34020} a^{7} + \frac{1097}{34020} a^{6} - \frac{12619}{34020} a^{5} - \frac{5497}{34020} a^{4} - \frac{1832}{8505} a^{3} - \frac{316}{945} a^{2} - \frac{3419}{11340} a - \frac{15067}{34020}$, $\frac{1}{612360} a^{16} + \frac{1}{153090} a^{15} + \frac{41}{612360} a^{14} - \frac{1}{8505} a^{13} - \frac{113}{612360} a^{12} - \frac{19}{43740} a^{11} - \frac{2353}{102060} a^{10} + \frac{3121}{153090} a^{9} + \frac{148}{3645} a^{8} - \frac{8567}{153090} a^{7} - \frac{2203}{34020} a^{6} + \frac{149159}{306180} a^{5} + \frac{192737}{612360} a^{4} + \frac{9857}{51030} a^{3} + \frac{11029}{87480} a^{2} + \frac{18041}{76545} a + \frac{3649}{17496}$, $\frac{1}{485560967122765800} a^{17} + \frac{2388373513}{6474146228303544} a^{16} - \frac{4741090498601}{485560967122765800} a^{15} - \frac{273338690923}{97112193424553160} a^{14} - \frac{32599444926953}{69365852446109400} a^{13} + \frac{1831368972487}{2569105646152200} a^{12} + \frac{1206523401784948}{60695120890345725} a^{11} + \frac{401395420656971}{242780483561382900} a^{10} + \frac{4415411472127109}{121390241780691450} a^{9} + \frac{352287005819233}{121390241780691450} a^{8} - \frac{9137328531627503}{242780483561382900} a^{7} + \frac{2004944938991329}{17341463111527350} a^{6} - \frac{56320256186257601}{485560967122765800} a^{5} - \frac{24399533238667031}{69365852446109400} a^{4} + \frac{6748800329585609}{97112193424553160} a^{3} - \frac{16730549414078831}{161853655707588600} a^{2} - \frac{32952802030944991}{97112193424553160} a + \frac{44097991937995297}{485560967122765800}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400345.116 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 3.1.4300.2 x3, 3.1.172.1 x3, 3.1.4300.1 x3, 3.1.1075.1 x3, 6.0.795070000.1, 6.0.1272112.1, 6.0.795070000.2, 6.0.49691875.1, 9.1.3418801000000.2 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |