Normalized defining polynomial
\( x^{18} - 70 x^{15} + 5869 x^{12} + 70492 x^{9} + 845791 x^{6} + 1289739 x^{3} + 1771561 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-50198942259523899975028947826347=-\,3^{27}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(333=3^{2}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{333}(1,·)$, $\chi_{333}(322,·)$, $\chi_{333}(260,·)$, $\chi_{333}(137,·)$, $\chi_{333}(10,·)$, $\chi_{333}(269,·)$, $\chi_{333}(211,·)$, $\chi_{333}(149,·)$, $\chi_{333}(26,·)$, $\chi_{333}(158,·)$, $\chi_{333}(223,·)$, $\chi_{333}(100,·)$, $\chi_{333}(38,·)$, $\chi_{333}(232,·)$, $\chi_{333}(47,·)$, $\chi_{333}(112,·)$, $\chi_{333}(248,·)$, $\chi_{333}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{1861} a^{12} - \frac{203}{1861} a^{9} + \frac{291}{1861} a^{6} - \frac{711}{1861} a^{3} + \frac{576}{1861}$, $\frac{1}{20471} a^{13} - \frac{9508}{20471} a^{10} - \frac{9014}{20471} a^{7} - \frac{711}{20471} a^{4} + \frac{8020}{20471} a$, $\frac{1}{225181} a^{14} - \frac{9508}{225181} a^{11} - \frac{9014}{225181} a^{8} - \frac{62124}{225181} a^{5} + \frac{89904}{225181} a^{2}$, $\frac{1}{12519280014931019} a^{15} - \frac{969617753009}{12519280014931019} a^{12} - \frac{5362818191581735}{12519280014931019} a^{9} + \frac{3586093171955111}{12519280014931019} a^{6} + \frac{2761656850520723}{12519280014931019} a^{3} + \frac{643816988343}{9405920371849}$, $\frac{1}{137712080164241209} a^{16} - \frac{969617753009}{137712080164241209} a^{13} - \frac{30401378221443773}{137712080164241209} a^{10} - \frac{8933186842975908}{137712080164241209} a^{7} + \frac{52838776910244799}{137712080164241209} a^{4} - \frac{18168023755355}{103465124090339} a$, $\frac{1}{1514832881806653299} a^{17} - \frac{969617753009}{1514832881806653299} a^{14} + \frac{658159022599762272}{1514832881806653299} a^{11} - \frac{8933186842975908}{1514832881806653299} a^{8} + \frac{465975017402968426}{1514832881806653299} a^{5} + \frac{499157596696340}{1138116364993729} a^{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{21}$, which has order $189$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{102536530042}{137712080164241209} a^{16} - \frac{7230725308800}{137712080164241209} a^{13} + \frac{606244669104960}{137712080164241209} a^{10} + \frac{6866938080315449}{137712080164241209} a^{7} + \frac{87366891280789440}{137712080164241209} a^{4} + \frac{100093897488960}{103465124090339} a \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8790607.76401 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.110889.2, 3.3.1369.1, 3.3.110889.1, \(\Q(\zeta_{9})^+\), 6.0.36889110963.1, 6.0.50602347.1, 6.0.36889110963.2, \(\Q(\zeta_{9})\), 9.9.1363532208525369.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |