Normalized defining polynomial
\( x^{18} + 9 x^{16} - 10 x^{15} + 42 x^{14} - 81 x^{13} + 268 x^{12} - 348 x^{11} + 1230 x^{10} - 1691 x^{9} + 3147 x^{8} - 5790 x^{7} + 6691 x^{6} - 9051 x^{5} + 8091 x^{4} - 7947 x^{3} + 6420 x^{2} + 885 x + 3481 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-500788032352702912536588288=-\,2^{12}\cdot 3^{21}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{387} a^{15} + \frac{20}{387} a^{14} - \frac{11}{387} a^{13} + \frac{29}{387} a^{12} + \frac{5}{129} a^{11} - \frac{11}{387} a^{10} + \frac{17}{387} a^{9} - \frac{50}{387} a^{8} + \frac{46}{129} a^{7} - \frac{35}{129} a^{6} - \frac{179}{387} a^{5} - \frac{85}{387} a^{4} - \frac{70}{387} a^{3} + \frac{68}{387} a^{2} - \frac{59}{129} a - \frac{16}{387}$, $\frac{1}{120391443} a^{16} + \frac{36400}{40130481} a^{15} - \frac{2488709}{40130481} a^{14} + \frac{6127900}{40130481} a^{13} + \frac{626870}{120391443} a^{12} + \frac{3783475}{120391443} a^{11} - \frac{1215515}{40130481} a^{10} - \frac{5464024}{40130481} a^{9} + \frac{16542604}{120391443} a^{8} - \frac{6063281}{13376827} a^{7} - \frac{23446373}{120391443} a^{6} - \frac{5195195}{40130481} a^{5} - \frac{15320795}{120391443} a^{4} + \frac{1533496}{120391443} a^{3} + \frac{57857387}{120391443} a^{2} + \frac{4290122}{120391443} a + \frac{16411160}{120391443}$, $\frac{1}{6605656525298614423257} a^{17} - \frac{46954080043}{12440031121089669347} a^{16} + \frac{5458684610305023617}{6605656525298614423257} a^{15} - \frac{32320779092807940653}{6605656525298614423257} a^{14} + \frac{553486963432542815821}{6605656525298614423257} a^{13} - \frac{751635519557043715978}{6605656525298614423257} a^{12} + \frac{45976896807696769700}{733961836144290491473} a^{11} - \frac{23294629751823249580}{153619919192991033099} a^{10} + \frac{798358765025265938339}{6605656525298614423257} a^{9} - \frac{2362957697401184501797}{6605656525298614423257} a^{8} + \frac{1952719713862510691992}{6605656525298614423257} a^{7} + \frac{894800964405426372638}{2201885508432871474419} a^{6} - \frac{75786439088036401255}{733961836144290491473} a^{5} - \frac{1069472200868886021736}{6605656525298614423257} a^{4} + \frac{722334231097057005836}{2201885508432871474419} a^{3} - \frac{9230979092860655618}{19485712464007712163} a^{2} + \frac{2769954635502334768382}{6605656525298614423257} a - \frac{34035947387956052071}{111960280089807024123}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{327794166010}{7077992177263971} a^{17} + \frac{10077315797}{39988656368723} a^{16} - \frac{3323881744883}{7077992177263971} a^{15} + \frac{19571347987856}{7077992177263971} a^{14} - \frac{10995799911761}{2359330725754657} a^{13} + \frac{104803737556591}{7077992177263971} a^{12} - \frac{232197251786639}{7077992177263971} a^{11} + \frac{601291622928835}{7077992177263971} a^{10} - \frac{346554137295767}{2359330725754657} a^{9} + \frac{2749488962142335}{7077992177263971} a^{8} - \frac{3979145666377667}{7077992177263971} a^{7} + \frac{7458633676328408}{7077992177263971} a^{6} - \frac{3814589994352252}{2359330725754657} a^{5} + \frac{4630859569905738}{2359330725754657} a^{4} - \frac{5145949107069858}{2359330725754657} a^{3} + \frac{12891799461895493}{7077992177263971} a^{2} - \frac{7943362345517017}{7077992177263971} a + \frac{44820809411551}{39988656368723} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1439143.7292234616 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.4306704645312.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $43$ | 43.3.2.3 | $x^{3} - 3483$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.3.2.2 | $x^{3} + 387$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.2 | $x^{3} + 387$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.3 | $x^{3} - 3483$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |