Normalized defining polynomial
\( x^{18} - 7 x^{17} + 6 x^{16} + 62 x^{15} - 87 x^{14} - 453 x^{13} + 1582 x^{12} - 2109 x^{11} + 4032 x^{10} - 13245 x^{9} + 41381 x^{8} - 73223 x^{7} + 125132 x^{6} - 153409 x^{5} + 331388 x^{4} - 449504 x^{3} + 758771 x^{2} - 538288 x + 477047 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-497863107144137244036834347537287=-\,7^{9}\cdot 37^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(259=7\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{259}(1,·)$, $\chi_{259}(195,·)$, $\chi_{259}(197,·)$, $\chi_{259}(71,·)$, $\chi_{259}(211,·)$, $\chi_{259}(90,·)$, $\chi_{259}(155,·)$, $\chi_{259}(218,·)$, $\chi_{259}(223,·)$, $\chi_{259}(160,·)$, $\chi_{259}(34,·)$, $\chi_{259}(232,·)$, $\chi_{259}(174,·)$, $\chi_{259}(83,·)$, $\chi_{259}(181,·)$, $\chi_{259}(118,·)$, $\chi_{259}(120,·)$, $\chi_{259}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{43} a^{15} + \frac{20}{43} a^{14} + \frac{11}{43} a^{13} - \frac{18}{43} a^{12} + \frac{9}{43} a^{11} - \frac{7}{43} a^{10} + \frac{7}{43} a^{9} + \frac{3}{43} a^{8} + \frac{3}{43} a^{7} + \frac{1}{43} a^{6} - \frac{6}{43} a^{5} + \frac{6}{43} a^{4} - \frac{20}{43} a^{3} - \frac{12}{43} a^{2} + \frac{18}{43} a - \frac{16}{43}$, $\frac{1}{1333} a^{16} + \frac{1}{1333} a^{15} + \frac{190}{1333} a^{14} + \frac{332}{1333} a^{13} - \frac{509}{1333} a^{12} - \frac{436}{1333} a^{11} - \frac{505}{1333} a^{10} + \frac{257}{1333} a^{9} + \frac{505}{1333} a^{8} - \frac{615}{1333} a^{7} - \frac{240}{1333} a^{6} + \frac{292}{1333} a^{5} - \frac{177}{1333} a^{4} - \frac{234}{1333} a^{3} + \frac{547}{1333} a^{2} - \frac{573}{1333} a - \frac{212}{1333}$, $\frac{1}{632519033990960283054653664357437260793759} a^{17} + \frac{120365597013295846605852216801418293853}{632519033990960283054653664357437260793759} a^{16} - \frac{1318733163818801730438844545979899989638}{632519033990960283054653664357437260793759} a^{15} - \frac{170608305710051102217458277266578318455994}{632519033990960283054653664357437260793759} a^{14} + \frac{178012607849045392492878044122091318749416}{632519033990960283054653664357437260793759} a^{13} - \frac{186747306111030567737586746910766105979111}{632519033990960283054653664357437260793759} a^{12} - \frac{252186704286770927491871703463257459249108}{632519033990960283054653664357437260793759} a^{11} - \frac{296033149773464269425390030306155541701604}{632519033990960283054653664357437260793759} a^{10} - \frac{73111506785636410555861081705204541884784}{632519033990960283054653664357437260793759} a^{9} + \frac{51669907827374730235652754798179311105085}{632519033990960283054653664357437260793759} a^{8} + \frac{114112552158767549971170999417126588816980}{632519033990960283054653664357437260793759} a^{7} - \frac{252352813926166220595449806744720523769982}{632519033990960283054653664357437260793759} a^{6} + \frac{275007460699447248425770138764668774706394}{632519033990960283054653664357437260793759} a^{5} + \frac{182112343634792554315687979707773492952077}{632519033990960283054653664357437260793759} a^{4} - \frac{100260499604386824226225464835089752810381}{632519033990960283054653664357437260793759} a^{3} + \frac{68265049603129613360015258668490986072001}{632519033990960283054653664357437260793759} a^{2} + \frac{5310918978990789736011889415302192082720}{20403839806160009130795279495401201961089} a - \frac{122596474230901334025408793775416968154509}{632519033990960283054653664357437260793759}$
Class group and class number
$C_{9}\times C_{171}$, which has order $1539$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.310213 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.1369.1, 6.0.642837223.1, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | $18$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $37$ | 37.9.8.1 | $x^{9} - 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 37.9.8.1 | $x^{9} - 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |