Normalized defining polynomial
\( x^{18} - 9 x^{17} + 117 x^{16} - 732 x^{15} + 5688 x^{14} - 27720 x^{13} + 160752 x^{12} - 634806 x^{11} + 2965176 x^{10} - 9587546 x^{9} + 37297827 x^{8} - 97660890 x^{7} + 320905905 x^{6} - 655191549 x^{5} + 1822549050 x^{4} - 2651158680 x^{3} + 6197190291 x^{2} - 4966452585 x + 9587714579 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-494938579887862497256991740536934683=-\,3^{44}\cdot 43^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1161=3^{3}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1161}(1,·)$, $\chi_{1161}(130,·)$, $\chi_{1161}(259,·)$, $\chi_{1161}(388,·)$, $\chi_{1161}(517,·)$, $\chi_{1161}(646,·)$, $\chi_{1161}(775,·)$, $\chi_{1161}(904,·)$, $\chi_{1161}(1033,·)$, $\chi_{1161}(85,·)$, $\chi_{1161}(214,·)$, $\chi_{1161}(343,·)$, $\chi_{1161}(472,·)$, $\chi_{1161}(601,·)$, $\chi_{1161}(730,·)$, $\chi_{1161}(859,·)$, $\chi_{1161}(988,·)$, $\chi_{1161}(1117,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{53} a^{15} + \frac{10}{53} a^{14} + \frac{13}{53} a^{13} - \frac{22}{53} a^{12} + \frac{21}{53} a^{11} + \frac{13}{53} a^{10} - \frac{18}{53} a^{9} + \frac{17}{53} a^{8} + \frac{19}{53} a^{7} - \frac{17}{53} a^{6} - \frac{20}{53} a^{5} - \frac{12}{53} a^{4} - \frac{26}{53} a^{3} + \frac{21}{53} a^{2} + \frac{10}{53} a - \frac{10}{53}$, $\frac{1}{53} a^{16} + \frac{19}{53} a^{14} + \frac{7}{53} a^{13} - \frac{24}{53} a^{12} + \frac{15}{53} a^{11} + \frac{11}{53} a^{10} - \frac{15}{53} a^{9} + \frac{8}{53} a^{8} + \frac{5}{53} a^{7} - \frac{9}{53} a^{6} - \frac{24}{53} a^{5} - \frac{12}{53} a^{4} + \frac{16}{53} a^{3} + \frac{12}{53} a^{2} - \frac{4}{53} a - \frac{6}{53}$, $\frac{1}{700916985026129819774124824138029223771535099612222696937} a^{17} - \frac{77766310472984657783010790807900340780856073594829426}{700916985026129819774124824138029223771535099612222696937} a^{16} + \frac{3284484117751900212463699184740989524160183441071326990}{700916985026129819774124824138029223771535099612222696937} a^{15} + \frac{29895692531049783434431232218704903586032991654624215412}{700916985026129819774124824138029223771535099612222696937} a^{14} + \frac{182570987552581745829641401570359056313207952961247054736}{700916985026129819774124824138029223771535099612222696937} a^{13} + \frac{323028591462153801125179572440698069879624675068462278441}{700916985026129819774124824138029223771535099612222696937} a^{12} - \frac{179093450692480344893430368576172173786924147679593767422}{700916985026129819774124824138029223771535099612222696937} a^{11} + \frac{294323770387873591094977530963818472236910312382185859155}{700916985026129819774124824138029223771535099612222696937} a^{10} - \frac{79649151564129851576443337300103317307764530853893243574}{700916985026129819774124824138029223771535099612222696937} a^{9} + \frac{226877431109971619925955100663072866333304403029370352657}{700916985026129819774124824138029223771535099612222696937} a^{8} - \frac{59002607487077327264965206342826351922381419296976827418}{700916985026129819774124824138029223771535099612222696937} a^{7} - \frac{95739632018699421569389455434542663706468482150410832764}{700916985026129819774124824138029223771535099612222696937} a^{6} + \frac{159433890256940661204362404641459593052305432236651772671}{700916985026129819774124824138029223771535099612222696937} a^{5} + \frac{163859049010281125907387795016891492130906044168093471369}{700916985026129819774124824138029223771535099612222696937} a^{4} - \frac{188278115286974558331689645061090804427508539217338819940}{700916985026129819774124824138029223771535099612222696937} a^{3} + \frac{77241149368360601950237232306600087146294710221931736543}{700916985026129819774124824138029223771535099612222696937} a^{2} - \frac{216902500733884508058130742693749084160459649232735255101}{700916985026129819774124824138029223771535099612222696937} a - \frac{155208285586682069771334322240251056936199520262042726369}{700916985026129819774124824138029223771535099612222696937}$
Class group and class number
$C_{7}\times C_{7}\times C_{11557}$, which has order $566293$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), \(\Q(\zeta_{9})^+\), 6.0.521645427.2, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 43 | Data not computed | ||||||