Normalized defining polynomial
\( x^{18} - 3 x^{17} + 7 x^{16} - 9 x^{15} + 6 x^{14} + 4 x^{13} + 11 x^{12} - 54 x^{11} + 121 x^{10} - 152 x^{9} + 100 x^{8} + 14 x^{7} - 89 x^{6} + 83 x^{5} - 4 x^{4} - 50 x^{3} + 36 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-494296175215808851968=-\,2^{12}\cdot 3^{9}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} - \frac{9}{19} a^{15} + \frac{6}{19} a^{14} - \frac{6}{19} a^{13} - \frac{3}{19} a^{12} - \frac{9}{19} a^{11} + \frac{2}{19} a^{10} - \frac{8}{19} a^{9} + \frac{2}{19} a^{8} - \frac{9}{19} a^{7} + \frac{6}{19} a^{6} - \frac{2}{19} a^{5} - \frac{8}{19} a^{4} - \frac{6}{19} a^{3} - \frac{3}{19} a^{2} - \frac{6}{19} a + \frac{9}{19}$, $\frac{1}{12056232317} a^{17} - \frac{78796658}{12056232317} a^{16} - \frac{246362364}{12056232317} a^{15} - \frac{87533867}{12056232317} a^{14} - \frac{6011434583}{12056232317} a^{13} - \frac{4171359091}{12056232317} a^{12} + \frac{2833490284}{12056232317} a^{11} - \frac{4155883975}{12056232317} a^{10} - \frac{2612118717}{12056232317} a^{9} + \frac{4072613870}{12056232317} a^{8} + \frac{1250577336}{12056232317} a^{7} - \frac{4438343464}{12056232317} a^{6} - \frac{1069765727}{12056232317} a^{5} - \frac{4674193152}{12056232317} a^{4} + \frac{4266916301}{12056232317} a^{3} + \frac{1008712334}{12056232317} a^{2} - \frac{5156845313}{12056232317} a + \frac{3487262309}{12056232317}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{359827682}{6584507} a^{17} - \frac{937879538}{6584507} a^{16} + \frac{2152280244}{6584507} a^{15} - \frac{2397084805}{6584507} a^{14} + \frac{1228684907}{6584507} a^{13} + \frac{1911259608}{6584507} a^{12} + \frac{4713857029}{6584507} a^{11} - \frac{17559802382}{6584507} a^{10} + \frac{36668281790}{6584507} a^{9} - \frac{40372356367}{6584507} a^{8} + \frac{20312585200}{6584507} a^{7} + \frac{12835145887}{6584507} a^{6} - \frac{26918060294}{6584507} a^{5} + \frac{19397991622}{6584507} a^{4} + \frac{6043379052}{6584507} a^{3} - \frac{15533126219}{6584507} a^{2} + \frac{6919910909}{6584507} a - \frac{952242575}{6584507} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2261.196159404121 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.76.1, 6.0.9747.1, 6.0.155952.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |